Skip to main content
Journal cover image

Fast acquisition of high resolution 4-D amide-amide NOESY with diagonal suppression, sparse sampling and FFT-CLEAN.

Publication ,  Journal Article
Werner-Allen, JW; Coggins, BE; Zhou, P
Published in: J Magn Reson
May 2010

Amide-amide NOESY provides important distance constraints for calculating global folds of large proteins, especially integral membrane proteins with beta-barrel folds. Here, we describe a diagonal-suppressed 4-D NH-NH TROSY-NOESY-TROSY (ds-TNT) experiment for NMR studies of large proteins. The ds-TNT experiment employs a spin state selective transfer scheme that suppresses diagonal signals while providing TROSY optimization in all four dimensions. Active suppression of the strong diagonal peaks greatly reduces the dynamic range of observable signals, making this experiment particularly suitable for use with sparse sampling techniques. To demonstrate the utility of this method, we collected a high resolution 4-D ds-TNT spectrum of a 23kDa protein using randomized concentric shell sampling (RCSS), and we used FFT-CLEAN processing for further reduction of aliasing artifacts - the first application of these techniques to a NOESY experiment. A comparison of peak parameters in the high resolution 4-D dataset with those from a conventionally-sampled 3-D control spectrum shows an accurate reproduction of NOE crosspeaks in addition to a significant reduction in resonance overlap, which largely eliminates assignment ambiguity. Likewise, a comparison of 4-D peak intensities and volumes before and after application of the CLEAN procedure demonstrates that the reduction of aliasing artifacts by CLEAN does not systematically distort NMR signals.

Duke Scholars

Published In

J Magn Reson

DOI

EISSN

1096-0856

Publication Date

May 2010

Volume

204

Issue

1

Start / End Page

173 / 178

Location

United States

Related Subject Headings

  • Signal Processing, Computer-Assisted
  • Models, Chemical
  • Magnetic Resonance Spectroscopy
  • Computer Simulation
  • Biophysics
  • Artifacts
  • Amides
  • Algorithms
  • 51 Physical sciences
  • 40 Engineering
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Werner-Allen, J. W., Coggins, B. E., & Zhou, P. (2010). Fast acquisition of high resolution 4-D amide-amide NOESY with diagonal suppression, sparse sampling and FFT-CLEAN. J Magn Reson, 204(1), 173–178. https://doi.org/10.1016/j.jmr.2010.02.017
Werner-Allen, Jon W., Brian E. Coggins, and Pei Zhou. “Fast acquisition of high resolution 4-D amide-amide NOESY with diagonal suppression, sparse sampling and FFT-CLEAN.J Magn Reson 204, no. 1 (May 2010): 173–78. https://doi.org/10.1016/j.jmr.2010.02.017.
Werner-Allen, Jon W., et al. “Fast acquisition of high resolution 4-D amide-amide NOESY with diagonal suppression, sparse sampling and FFT-CLEAN.J Magn Reson, vol. 204, no. 1, May 2010, pp. 173–78. Pubmed, doi:10.1016/j.jmr.2010.02.017.
Werner-Allen JW, Coggins BE, Zhou P. Fast acquisition of high resolution 4-D amide-amide NOESY with diagonal suppression, sparse sampling and FFT-CLEAN. J Magn Reson. 2010 May;204(1):173–178.
Journal cover image

Published In

J Magn Reson

DOI

EISSN

1096-0856

Publication Date

May 2010

Volume

204

Issue

1

Start / End Page

173 / 178

Location

United States

Related Subject Headings

  • Signal Processing, Computer-Assisted
  • Models, Chemical
  • Magnetic Resonance Spectroscopy
  • Computer Simulation
  • Biophysics
  • Artifacts
  • Amides
  • Algorithms
  • 51 Physical sciences
  • 40 Engineering