A robust Nitsche's formulation for interface problems
In this work, we propose a novel weighting for the interfacial consistency terms arising in a Nitsche variational form. We demonstrate through numerical analysis and extensive numerical evidence that the choice of the weighting parameter has a great bearing on the stability of the method. Consequently, we propose a weighting that results in an estimate for the stabilization parameter such that the method remains well behaved in varied settings; ranging from the configuration of embedded interfaces resulting in arbitrarily small elements to such cases where a large contrast in material properties exists. An important consequence of this weighting is that the bulk as well as the interfacial fields remain well behaved in the presence of (a) elements with arbitrarily small volume fractions, (b) large material heterogeneities and (c) both large heterogeneities as well as arbitrarily small elements. We then highlight the accuracy and efficiency of the proposed formulation through numerical examples, focusing particular attention on interfacial quantities of interest. © 2012 Elsevier B.V.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Applied Mathematics
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 01 Mathematical Sciences
Citation
Published In
DOI
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Applied Mathematics
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 01 Mathematical Sciences