Skip to main content
Journal cover image

Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition.

Publication ,  Journal Article
Rock, JR; Barkauskas, CE; Cronce, MJ; Xue, Y; Harris, JR; Liang, J; Noble, PW; Hogan, BLM
Published in: Proc Natl Acad Sci U S A
December 27, 2011

There are currently few treatment options for pulmonary fibrosis. Innovations may come from a better understanding of the cellular origin of the characteristic fibrotic lesions. We have analyzed normal and fibrotic mouse and human lungs by confocal microscopy to define stromal cell populations with respect to several commonly used markers. In both species, we observed unexpected heterogeneity of stromal cells. These include numerous cells with molecular and morphological characteristics of pericytes, implicated as a source of myofibroblasts in other fibrotic tissues. We used mouse genetic tools to follow the fates of specific cell types in the bleomcyin-induced model of pulmonary fibrosis. Using inducible transgenic alleles to lineage trace pericyte-like cells in the alveolar interstitium, we show that this population proliferates in fibrotic regions. However, neither these cells nor their descendants express high levels of the myofibroblast marker alpha smooth muscle actin (Acta2, aSMA). We then used a Surfactant protein C-CreER(T2) knock-in allele to follow the fate of Type II alveolar cells (AEC2) in vivo. We find no evidence at the cellular or molecular level for epithelial to mesenchymal transition of labeled cells into myofibroblasts. Rather, bleomycin accelerates the previously reported conversion of AEC2 into AEC1 cells. Similarly, epithelial cells labeled with our Scgb1a1-CreER allele do not give rise to fibroblasts but generate both AEC2 and AEC1 cells in response to bleomycin-induced lung injury. Taken together, our results show a previously unappreciated heterogeneity of cell types proliferating in fibrotic lesions and exclude pericytes and two epithelial cell populations as the origin of myofibroblasts.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Proc Natl Acad Sci U S A

DOI

EISSN

1091-6490

Publication Date

December 27, 2011

Volume

108

Issue

52

Start / End Page

E1475 / E1483

Location

United States

Related Subject Headings

  • Stromal Cells
  • Real-Time Polymerase Chain Reaction
  • Pulmonary Fibrosis
  • Pulmonary Alveoli
  • Pericytes
  • Myofibroblasts
  • Mice
  • Immunohistochemistry
  • Humans
  • Flow Cytometry
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Rock, J. R., Barkauskas, C. E., Cronce, M. J., Xue, Y., Harris, J. R., Liang, J., … Hogan, B. L. M. (2011). Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc Natl Acad Sci U S A, 108(52), E1475–E1483. https://doi.org/10.1073/pnas.1117988108
Rock, Jason R., Christina E. Barkauskas, Michael J. Cronce, Yan Xue, Jeffrey R. Harris, Jiurong Liang, Paul W. Noble, and Brigid L. M. Hogan. “Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition.Proc Natl Acad Sci U S A 108, no. 52 (December 27, 2011): E1475–83. https://doi.org/10.1073/pnas.1117988108.
Rock JR, Barkauskas CE, Cronce MJ, Xue Y, Harris JR, Liang J, et al. Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):E1475–83.
Rock, Jason R., et al. “Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition.Proc Natl Acad Sci U S A, vol. 108, no. 52, Dec. 2011, pp. E1475–83. Pubmed, doi:10.1073/pnas.1117988108.
Rock JR, Barkauskas CE, Cronce MJ, Xue Y, Harris JR, Liang J, Noble PW, Hogan BLM. Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):E1475–E1483.
Journal cover image

Published In

Proc Natl Acad Sci U S A

DOI

EISSN

1091-6490

Publication Date

December 27, 2011

Volume

108

Issue

52

Start / End Page

E1475 / E1483

Location

United States

Related Subject Headings

  • Stromal Cells
  • Real-Time Polymerase Chain Reaction
  • Pulmonary Fibrosis
  • Pulmonary Alveoli
  • Pericytes
  • Myofibroblasts
  • Mice
  • Immunohistochemistry
  • Humans
  • Flow Cytometry