Skip to main content

Fundamentals of desiccation cracking of fine-grained soils: Experimental characterisation and mechanisms identification

Publication ,  Journal Article
Peron, H; Hueckel, T; Laloui, L; Hu, LB
Published in: Canadian Geotechnical Journal
October 1, 2009

This paper presents the results of a comprehensive experimental study of the desiccation of fine-grained soils. Air drying of initially saturated soil slabs in controlled conditions is investigated by performing three kinds of tests: free desiccation tests, constrained desiccation tests (prevented shrinkage), and crack pattern tests. Strains, suction, water content, and crack geometry are investigated. Results reveal that unconstrained drying exhibits two stages: a domain with large, mostly irrecoverable deformations and degree of saturation close to 100%, followed by a domain with lower deformations at a decreasing degree of saturation. Homogeneous soil macroscopic cracking is possible only in the presence of boundary constraints and (or) moisture gradients, inducing the build-up of tensile stresses. Results also show that, for the initially saturated remoulded soils tested here, in the whole sample and near a crack initiation point, the degree of saturation remains very close to 100% until cracking, while cracking onset, the air-entry suction, and the shrinkage limit are close to each other. Cavitation nuclei and the formation of an irregular drying front at cracking initiation are commented upon in light of this observation. Finally, results suggest that the crack pattern geometry is the result of energy redistribution. A quantification of the process is proposed. © 2009 NRC Canada.

Duke Scholars

Published In

Canadian Geotechnical Journal

DOI

ISSN

0008-3674

Publication Date

October 1, 2009

Volume

46

Issue

10

Start / End Page

1177 / 1201

Related Subject Headings

  • Geological & Geomatics Engineering
  • 4019 Resources engineering and extractive metallurgy
  • 4005 Civil engineering
  • 0907 Environmental Engineering
  • 0905 Civil Engineering
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Peron, H., Hueckel, T., Laloui, L., & Hu, L. B. (2009). Fundamentals of desiccation cracking of fine-grained soils: Experimental characterisation and mechanisms identification. Canadian Geotechnical Journal, 46(10), 1177–1201. https://doi.org/10.1139/T09-054
Peron, H., T. Hueckel, L. Laloui, and L. B. Hu. “Fundamentals of desiccation cracking of fine-grained soils: Experimental characterisation and mechanisms identification.” Canadian Geotechnical Journal 46, no. 10 (October 1, 2009): 1177–1201. https://doi.org/10.1139/T09-054.
Peron H, Hueckel T, Laloui L, Hu LB. Fundamentals of desiccation cracking of fine-grained soils: Experimental characterisation and mechanisms identification. Canadian Geotechnical Journal. 2009 Oct 1;46(10):1177–201.
Peron, H., et al. “Fundamentals of desiccation cracking of fine-grained soils: Experimental characterisation and mechanisms identification.” Canadian Geotechnical Journal, vol. 46, no. 10, Oct. 2009, pp. 1177–201. Scopus, doi:10.1139/T09-054.
Peron H, Hueckel T, Laloui L, Hu LB. Fundamentals of desiccation cracking of fine-grained soils: Experimental characterisation and mechanisms identification. Canadian Geotechnical Journal. 2009 Oct 1;46(10):1177–1201.

Published In

Canadian Geotechnical Journal

DOI

ISSN

0008-3674

Publication Date

October 1, 2009

Volume

46

Issue

10

Start / End Page

1177 / 1201

Related Subject Headings

  • Geological & Geomatics Engineering
  • 4019 Resources engineering and extractive metallurgy
  • 4005 Civil engineering
  • 0907 Environmental Engineering
  • 0905 Civil Engineering