Linear and nonlinear electromagnetic coupling models in vibration-based energy harvesting
This paper investigates the response of an energy harvester that uses electromagnetic induction to convert ambient vibration into electrical energy. A unique aspect of the present study is the comparison of the systems response behavior when either a linear or a physically motivated form of nonlinear coupling is applied. The motivating hypothesis for this work was that nonlinear coupling could be used to improve the performance of an energy harvester by broadening its frequency response. Combined theoretical and numerical studies investigate the harvesters response for both single and multi-frequency base excitation. Our investigations unveil regions in the parameter space where nonlinear coupling is better than linear coupling and regions where the opposite is true. The meaningful conclusion is that nonlinear coupling can sometimes be detrimental, but it can also be beneficial if properly designed into the system. © 2011 Elsevier Ltd. All rights reserved.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Acoustics
- 51 Physical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Acoustics
- 51 Physical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences