Investigation of period-doubling islands in milling with simultaneously engaged helical flutes
This paper investigates the stability of a milling process with simultaneously engaged flutes using the state-space TFEA and Chebyshev collocation methods. In contrast to prior works, multiple flute engagement due to both the high depth of cut and high step-over distance are considered. A particular outcome of this study is the demonstration of a different stability behavior in comparison to prior works. To elaborate, period-doubling regions are shown to appear at relatively high radial immersions when multiple flutes with either a zero or nonzero helix angle are simultaneously cutting. We also demonstrate stability differences that arise due to the parity in the number of flutes, especially at full radial immersion. In addition, we study other features induced by helical tools such as the waviness of the Hopf lobes, the sensitivity of the period-doubling islands to the radial immersion, as along with the orientation of the islands with respect to the Hopf lobes. © 2012 American Society of Mechanical Engineers.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Acoustics
- 4017 Mechanical engineering
- 4005 Civil engineering
- 0915 Interdisciplinary Engineering
- 0913 Mechanical Engineering
- 0905 Civil Engineering
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Acoustics
- 4017 Mechanical engineering
- 4005 Civil engineering
- 0915 Interdisciplinary Engineering
- 0913 Mechanical Engineering
- 0905 Civil Engineering