Skip to main content

Regulation of cation channels in liver cells by intracellular calcium and protein kinase C

Publication ,  Journal Article
Fitz, JG; Sostman, AH; Middleton, JP
Published in: American Journal of Physiology - Gastrointestinal and Liver Physiology
May 24, 1994

The regulation of Ca2+-permeant cation channels in HTC hepatoma cells was investigated using patch clamp and fluorescence techniques. In intact cells, exposure to nucleotide analogues ATP, uridine 5'-triphosphate (UTP), and adenosine 5'-O-(3-thiotriphosphate) (ATPγS) caused transient opening of channels with linear conductances of ~18 and ~28 pS. Channels were permeable to Na+, K+, and Ca2+ and carried inward (depolarizing) current at the resting potential. Exposure to thapsigargin to increase cytosolic Ca2+ concentration ([Ca2+](i)) opened similar channels, suggesting that opening is stimulated by a rise in [Ca2+](i). In subconfluent monolayers, ATP increased [Ca2+](i) with half-maximal effects at ~7.4 μM; at 10-4 M, the peak increase in [Ca2+](i) was ATP > UTP > ATPγS > > 2-methyl- thioadenosine 5'-triphosphate, α,β-methyleneadenosine 5'-triphosphate, and adenosine. The relative potency suggests that the effects are mediated by 5'- nucleotide receptors. In excised inside-out patches, channels were not activated by myo-inositol 1,4,5-trisphosphate (50-100 μM) or myo-inositol 1,3,4,5-trisphosphate (20 μM) but opened after increases in Ca2+ to greater than ~250 nM, consistent with a direct role for Ca2+ in channel opening. In intact cells, channel opening was followed by a prolonged refractory period. Protein kinase C appears to contribute by inhibition of the ATP-stimulated [Ca2+](i) response and by direct inhibitory effects on the channel. These findings indicate that extracellular ATP leads to modulation of liver cell cation channels through activation of 5'-nucleotide receptors and are consistent with a model in which transient opening of channels is stimulated by a rise in [Ca2+](i) and subsequent closure is mediated by protein kinase C-dependent pathways.

Duke Scholars

Published In

American Journal of Physiology - Gastrointestinal and Liver Physiology

ISSN

0002-9513

Publication Date

May 24, 1994

Volume

266

Issue

4 29-4

Related Subject Headings

  • Cardiovascular System & Hematology
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Fitz, J. G., Sostman, A. H., & Middleton, J. P. (1994). Regulation of cation channels in liver cells by intracellular calcium and protein kinase C. American Journal of Physiology - Gastrointestinal and Liver Physiology, 266(4 29-4).
Fitz, J. G., A. H. Sostman, and J. P. Middleton. “Regulation of cation channels in liver cells by intracellular calcium and protein kinase C.” American Journal of Physiology - Gastrointestinal and Liver Physiology 266, no. 4 29-4 (May 24, 1994).
Fitz JG, Sostman AH, Middleton JP. Regulation of cation channels in liver cells by intracellular calcium and protein kinase C. American Journal of Physiology - Gastrointestinal and Liver Physiology. 1994 May 24;266(4 29-4).
Fitz, J. G., et al. “Regulation of cation channels in liver cells by intracellular calcium and protein kinase C.” American Journal of Physiology - Gastrointestinal and Liver Physiology, vol. 266, no. 4 29-4, May 1994.
Fitz JG, Sostman AH, Middleton JP. Regulation of cation channels in liver cells by intracellular calcium and protein kinase C. American Journal of Physiology - Gastrointestinal and Liver Physiology. 1994 May 24;266(4 29-4).

Published In

American Journal of Physiology - Gastrointestinal and Liver Physiology

ISSN

0002-9513

Publication Date

May 24, 1994

Volume

266

Issue

4 29-4

Related Subject Headings

  • Cardiovascular System & Hematology