A 4-μA quiescent-current dual-mode digitally controlled buck converter IC for cellular phone applications
This paper describes a dual-mode digitally controlled buck converter IC for cellular phone applications. An architecture employing internal power management is introduced to ensure voltage compatibility between a single-cell lithium-ion battery voltage and a low-voltage integrated circuit technology. Special purpose analog and digital interface elements are developed. These include a ring-oscillator-based A/D converter (ring-ADC), which is nearly entirely synthesizable, is robust against switching noise, and has flexible resolution control, and a very low power ring-oscillator-multiplexer-based digital pulse-width modulation (PWM) generation module (ring-MUX DPWM). The chip, which includes an output power stage rated for 400 mA, occupies an active area 2 mm2 in 0.25-μm CMOS. Very high efficiencies are achieved over a load range of 0.1-400 mA. Measured quiescent current in PFM mode is 4 μA.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Electrical & Electronic Engineering
- 4009 Electronics, sensors and digital hardware
- 1099 Other Technology
- 0906 Electrical and Electronic Engineering
- 0204 Condensed Matter Physics
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Electrical & Electronic Engineering
- 4009 Electronics, sensors and digital hardware
- 1099 Other Technology
- 0906 Electrical and Electronic Engineering
- 0204 Condensed Matter Physics