Skip to main content
construction release_alert
Scholars@Duke will be undergoing maintenance April 11-15. Some features may be unavailable during this time.
cancel
Journal cover image

A method for direct localized sound speed estimates using registered virtual detectors.

Publication ,  Journal Article
Byram, BC; Trahey, GE; Jensen, JA
Published in: Ultrasonic imaging
July 2012

Accurate sound speed estimates are desirable in a number of fields. In an effort to increase the spatial resolution of sound speed estimates, a new method is proposed for direct measurement of sound speed between arbitrary spatial locations. The method uses the sound speed estimator developed by Anderson and Trahey. Their least squares fit of the received waveform's curvature provides an estimate of the wave's point of origin. The point of origin and the delay profile calculated from the fit are used to arrive at a spatially registered virtual detector. Between a pair of registered virtual detectors, a spherical wave is propagated. By beamforming the data, the time-of-flight between the two virtual sources can be calculated. From this information, the local sound speed can be estimated. Validation of the estimator is made using phantom and simulation data. The set of test phantoms consisted of both homogeneous and inhomogeneous media. Several different inhomogeneous phantom configurations were used for the physical validation. The simulation validation focused on the limits of target depth and signal-to-noise ratio on virtual detector registration. The simulations also compare the impact of two- and three-layer inhomogeneous media. The phantom results varied based on signal-to-noise ratio and geometry. The results for all cases were generally less than 1% mean error and standard deviation. The simulation results varied somewhat with depth and F/#, but primarily, they varied with signal-to-noise ratio and geometry. With two-layer geometries, the algorithm has a worst-case spatial registration bias of 0.02%. With three-layer geometries, the axial registration error gets worse with a bias magnitude up to 2.1% but is otherwise relatively stable over depth. The stability over depth of the bias in a given medium still allows for accurate sound speed estimates with a mean relative error less than 0.2%.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Ultrasonic imaging

DOI

EISSN

1096-0910

ISSN

0161-7346

Publication Date

July 2012

Volume

34

Issue

3

Start / End Page

159 / 180

Related Subject Headings

  • Ultrasonics
  • Sound
  • Signal-To-Noise Ratio
  • Phantoms, Imaging
  • Least-Squares Analysis
  • Image Enhancement
  • Computer Simulation
  • Algorithms
  • Acoustics
  • 4003 Biomedical engineering
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Byram, B. C., Trahey, G. E., & Jensen, J. A. (2012). A method for direct localized sound speed estimates using registered virtual detectors. Ultrasonic Imaging, 34(3), 159–180. https://doi.org/10.1177/0161734612455576
Byram, Brett C., Gregg E. Trahey, and Jørgen A. Jensen. “A method for direct localized sound speed estimates using registered virtual detectors.Ultrasonic Imaging 34, no. 3 (July 2012): 159–80. https://doi.org/10.1177/0161734612455576.
Byram BC, Trahey GE, Jensen JA. A method for direct localized sound speed estimates using registered virtual detectors. Ultrasonic imaging. 2012 Jul;34(3):159–80.
Byram, Brett C., et al. “A method for direct localized sound speed estimates using registered virtual detectors.Ultrasonic Imaging, vol. 34, no. 3, July 2012, pp. 159–80. Epmc, doi:10.1177/0161734612455576.
Byram BC, Trahey GE, Jensen JA. A method for direct localized sound speed estimates using registered virtual detectors. Ultrasonic imaging. 2012 Jul;34(3):159–180.
Journal cover image

Published In

Ultrasonic imaging

DOI

EISSN

1096-0910

ISSN

0161-7346

Publication Date

July 2012

Volume

34

Issue

3

Start / End Page

159 / 180

Related Subject Headings

  • Ultrasonics
  • Sound
  • Signal-To-Noise Ratio
  • Phantoms, Imaging
  • Least-Squares Analysis
  • Image Enhancement
  • Computer Simulation
  • Algorithms
  • Acoustics
  • 4003 Biomedical engineering