Skip to main content

SU‐FF‐J‐30: Quantification of Normal Organ Motion Due to the Respiratory and Cardiac Cycles

Publication ,  Conference
Wang, Z; Yin, F; Raidy, T; Kelly, K; Oldham, M; Das, S; Zhou, S; Marks, L; Kasibhatla, M; Willett, C
Published in: Medical Physics
January 1, 2005

Purpose: To quantify the degree of normal organ motion due to the respiratory and cardiac cycles. Better definition of such motion may be useful in defining field margins and in assessing the utility of gating technologies. Method and Materials: Four healthy volunteers were serially scanned in the supine position with a GE 1.5T MRI scanner. T1‐weighted sagittal and coronal localization scans were first performed to define the regions to be studied. Axial images through the heart, liver and pancreas were continuously scanned with fast cine MRI scans at three different gating settings: a). without either respiratory or cardiac gating, b). with respiratory gating but without cardiac gating, and c). with both respiratory and cardiac gating. The motions of heart, liver and pancreas were calculated at the organ edges with the maximum motions along the direction that is perpendicular to the edge. Results: For the scans without either respiratory or cardiac gating, the detected organ motions on the axial slices were 1.4 cm for heart, 1.1 cm for liver, and 1.0 cm for pancreas. For the scans with respiratory gating but without cardiac gating, the motions were 0.7 cm for heart, 0.5 cm for liver, and 0.4 cm for pancreas. For the scans with both respiratory and cardiac gating, all the motions were <0.2 cm. The AVI movie files were also created and showed significant differences in organ motions for three different gating settings. Conclusion: With respiratory gating only, significant organ motion is still present in heart, liver and pancreas. In some clinical settings, the application of both cardiac and respiratory gating may be therapeutically advantageous. Additional study is warranted to better understand this issue. Conflict of Interest: Authors received grant support from Varian Medical Systems. © 2005, American Association of Physicists in Medicine. All rights reserved.

Duke Scholars

Published In

Medical Physics

DOI

ISSN

0094-2405

Publication Date

January 1, 2005

Volume

32

Issue

6

Start / End Page

1926

Related Subject Headings

  • Nuclear Medicine & Medical Imaging
  • 5105 Medical and biological physics
  • 4003 Biomedical engineering
  • 1112 Oncology and Carcinogenesis
  • 0903 Biomedical Engineering
  • 0299 Other Physical Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Wang, Z., Yin, F., Raidy, T., Kelly, K., Oldham, M., Das, S., … Willett, C. (2005). SU‐FF‐J‐30: Quantification of Normal Organ Motion Due to the Respiratory and Cardiac Cycles. In Medical Physics (Vol. 32, p. 1926). https://doi.org/10.1118/1.1997576
Wang, Z., F. Yin, T. Raidy, K. Kelly, M. Oldham, S. Das, S. Zhou, L. Marks, M. Kasibhatla, and C. Willett. “SU‐FF‐J‐30: Quantification of Normal Organ Motion Due to the Respiratory and Cardiac Cycles.” In Medical Physics, 32:1926, 2005. https://doi.org/10.1118/1.1997576.
Wang Z, Yin F, Raidy T, Kelly K, Oldham M, Das S, et al. SU‐FF‐J‐30: Quantification of Normal Organ Motion Due to the Respiratory and Cardiac Cycles. In: Medical Physics. 2005. p. 1926.
Wang, Z., et al. “SU‐FF‐J‐30: Quantification of Normal Organ Motion Due to the Respiratory and Cardiac Cycles.” Medical Physics, vol. 32, no. 6, 2005, p. 1926. Scopus, doi:10.1118/1.1997576.
Wang Z, Yin F, Raidy T, Kelly K, Oldham M, Das S, Zhou S, Marks L, Kasibhatla M, Willett C. SU‐FF‐J‐30: Quantification of Normal Organ Motion Due to the Respiratory and Cardiac Cycles. Medical Physics. 2005. p. 1926.

Published In

Medical Physics

DOI

ISSN

0094-2405

Publication Date

January 1, 2005

Volume

32

Issue

6

Start / End Page

1926

Related Subject Headings

  • Nuclear Medicine & Medical Imaging
  • 5105 Medical and biological physics
  • 4003 Biomedical engineering
  • 1112 Oncology and Carcinogenesis
  • 0903 Biomedical Engineering
  • 0299 Other Physical Sciences