Comparison of enhanced microsphere transport in an iron-oxide-coated porous medium by pre-adsorbed and co-depositing organic matter
The effects of two types of organic matter (OM) (humic acid and protein) on colloid transport in porous media were investigated with column experiments and numerical modeling. Colloid deposition was explored in double-pulse experiments (DPEs) by injecting a pulse of OM to allow its pre-adsorption to iron-oxide-coated sand, followed by a pulse of latex microspheres. These experiments were compared with single-pulse experiments (SPEs), where one mixed pulse of OM and microspheres was introduced to the column. The experimental results show that pre-adsorbed and co-depositing OM may, respectively, limit initial and transient colloid deposition. The DPE results can be interpreted with an existing colloid transport model (random sequential adsorption: RSA). SPE results were interpreted with an extended RSA model (RSAE) that couples the process of OM co-deposition and blocking to colloid transport by introducing a conversion factor (K
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Chemical Engineering
- 4016 Materials engineering
- 4011 Environmental engineering
- 4004 Chemical engineering
- 0907 Environmental Engineering
- 0905 Civil Engineering
- 0904 Chemical Engineering
Citation
Published In
DOI
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Chemical Engineering
- 4016 Materials engineering
- 4011 Environmental engineering
- 4004 Chemical engineering
- 0907 Environmental Engineering
- 0905 Civil Engineering
- 0904 Chemical Engineering