Skip to main content
Journal cover image

Identifiability of transient storage model parameters along a mountain stream

Publication ,  Journal Article
Kelleher, C; Wagener, T; McGlynn, B; Ward, AS; Gooseff, MN; Payn, RA
Published in: Water Resources Research
September 1, 2013

Transient storage models are widely used in combination with tracer experiments to characterize stream reaches via calibrated parameter estimates. These parameters quantify the main transport and storage processes. However, it is implicitly assumed that calibrated parameters are uniquely identifiable and hence provide a unique characterization of the stream. We investigate parameter identifiability along with the stream conditions that control identifiability for 10 breakthrough curves (BTC) for 100 m pulse injections along Stringer Creek, Montana, USA. Identifiability is assessed through global, variance-based sensitivity analysis of the one-dimensional transport with inflow and storage model (OTIS). Results indicate that the main channel area parameter A and the dispersion coefficient D were the most sensitive parameters and, therefore, likely to be identifiable across all timescales and reaches. Identifiability of transient storage zone size As fell into two categories along Stringer Creek. As was identifiable for lower elevation regions, corresponding to a constrained valley, higher stream slopes, and in-channel roughness, but not for upper stream regions, corresponding to a wider valley floor, flatter stream slopes, and low roughness. The storage zone exchange parameter α was nonidentifiable across all study reaches. Our results suggest that only some of the processes represented in the model will be relevant and, therefore, identifiable for pulse injection data. As such, calibrated parameter estimates should be accompanied by an assessment of parameter sensitivity or uncertainty. We also show that parameter identifiability varies with stream setting along Stringer Creek, suggesting that physical characteristics directly influence the identification of dominant stream processes. Key Points Transient storage model parameters characterize transport in stream reaches Identifiability of model parameters varies with stream morphology Physical setting controls identifiability and process dominance ©2013. American Geophysical Union. All Rights Reserved.

Duke Scholars

Published In

Water Resources Research

DOI

EISSN

1944-7973

ISSN

0043-1397

Publication Date

September 1, 2013

Volume

49

Issue

9

Start / End Page

5290 / 5306

Related Subject Headings

  • Environmental Engineering
  • 4011 Environmental engineering
  • 4005 Civil engineering
  • 3707 Hydrology
  • 0907 Environmental Engineering
  • 0905 Civil Engineering
  • 0406 Physical Geography and Environmental Geoscience
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Kelleher, C., Wagener, T., McGlynn, B., Ward, A. S., Gooseff, M. N., & Payn, R. A. (2013). Identifiability of transient storage model parameters along a mountain stream. Water Resources Research, 49(9), 5290–5306. https://doi.org/10.1002/wrcr.20413
Kelleher, C., T. Wagener, B. McGlynn, A. S. Ward, M. N. Gooseff, and R. A. Payn. “Identifiability of transient storage model parameters along a mountain stream.” Water Resources Research 49, no. 9 (September 1, 2013): 5290–5306. https://doi.org/10.1002/wrcr.20413.
Kelleher C, Wagener T, McGlynn B, Ward AS, Gooseff MN, Payn RA. Identifiability of transient storage model parameters along a mountain stream. Water Resources Research. 2013 Sep 1;49(9):5290–306.
Kelleher, C., et al. “Identifiability of transient storage model parameters along a mountain stream.” Water Resources Research, vol. 49, no. 9, Sept. 2013, pp. 5290–306. Scopus, doi:10.1002/wrcr.20413.
Kelleher C, Wagener T, McGlynn B, Ward AS, Gooseff MN, Payn RA. Identifiability of transient storage model parameters along a mountain stream. Water Resources Research. 2013 Sep 1;49(9):5290–5306.
Journal cover image

Published In

Water Resources Research

DOI

EISSN

1944-7973

ISSN

0043-1397

Publication Date

September 1, 2013

Volume

49

Issue

9

Start / End Page

5290 / 5306

Related Subject Headings

  • Environmental Engineering
  • 4011 Environmental engineering
  • 4005 Civil engineering
  • 3707 Hydrology
  • 0907 Environmental Engineering
  • 0905 Civil Engineering
  • 0406 Physical Geography and Environmental Geoscience