Matthew James Hilton
Associate Professor in Orthopaedic Surgery
A long-term interest of the Hilton lab is to uncover the molecular circuitry regulating lineage commitment, proliferation, and differentiation of skeletal stem cells, chondrocytes, and osteoblasts. My laboratory uses genetic mouse models and primary cell culture techniques coupled with biochemistry to answer questions regarding skeletal stem cell self-renewal/differentiation, chondrogenesis, and osteoblastogenesis. Recently my lab has generated novel data from a variety of Notch gain and loss-of-function mutant mice demonstrating the importance of Notch signaling in each of these processes. We are currently investigating the exact Notch signaling mechanisms at play during skeletal development, disease, and repair. Additional studies are also focused on identifying and understanding the molecular mechanisms underlying various congenital skeletal pathologies, including Multiple Herediatry Exostoses (MHE) and Preaxial Polydactyly (PPD).
Current Appointments & Affiliations
- Associate Professor in Orthopaedic Surgery, Orthopaedic Surgery, Clinical Science Departments 2018
- Associate Professor in Cell Biology, Cell Biology, Basic Science Departments 2015
- Affiliate of the Duke Regeneration Center, Regeneration Next Initiative, Basic Science Departments 2021
Contact Information
- 450 Research Drive, LSRC B321c, DUMC 91009, Durham, NC 27710
- 91009, Durham, NC 27710
-
matthew.hilton@duke.edu
(919) 613-9761
-
The Hilton Laboratory
- Background
-
Education, Training, & Certifications
- Ph.D., University of Houston 2004
-
Previous Appointments & Affiliations
- Associate Professor in Orthopaedic Surgery, Orthopaedic Surgery, Clinical Science Departments 2015 - 2018
- Instructor, Temporary in the Department of Orthopaedic Surgery, Orthopaedic Surgery, Clinical Science Departments 2014 - 2015
- Expertise
-
Subject Headings
- Animals
- Articular cartilage
- Bone Marrow Cells
- Bone Neoplasms
- Bone Resorption
- Bone and Bones
- Cartilage
- Cell Differentiation
- Cell Growth Processes
- Cell Line
- Cell Lineage
- Cell Separation
- Cells, Cultured
- Chondrocytes
- Cloning, Molecular
- Congresses as Topic
- DNA-Binding Proteins
- Diabetes Mellitus, Type 2
- Disease Models, Animal
- Embryo, Mammalian
- Exostoses, Multiple Hereditary
- Fetus
- Fracture Healing
- Fractures, Bone
- Gene Expression
- Gene Expression Regulation
- Glycoproteins
- Glycosaminoglycans
- Growth Disorders
- Hedgehog Proteins
- Hindlimb
- Immunohistochemistry
- Intercellular Signaling Peptides and Proteins
- Joints
- Limb Buds
- Membrane Proteins
- Mesenchymal stem cells
- Mesoderm
- Models, Animal
- Models, Biological
- Muscle, Skeletal
- Musculoskeletal Development
- Musculoskeletal Diseases
- Mutation
- Neoplasm Proteins
- Notch genes
- Osteoarthritis
- Osteoblasts
- Parathyroid Hormone-Related Protein
- Phenotype
- Philadelphia
- Protein Binding
- Proteoglycans
- Range of Motion, Articular
- Regeneration
- Regenerative Medicine
- Signal Transduction
- Transcription Factors
- Wnt Proteins
-
Global Scholarship
-
Research
-
- Research
-
Selected Grants
- Targeting the HIF-2 Signaling Pathway as a Radioprotective Strategy for Bone awarded by National Institutes of Health 2022 - 2027
- Training Program in Developmental and Stem Cell Biology awarded by National Institutes of Health 2001 - 2027
- Resorbable, Phsophorylated Poly(ester urea) Surgical Adhesive to Enhance Fracture Healing awarded by National Institutes of Health 2021 - 2026
- Cell and Molecular Biology Training Program awarded by National Institutes of Health 2021 - 2026
- Genetic and Genomics Training Grant awarded by National Institutes of Health 2020 - 2025
- Duke CTSA (TL1) Year 5 awarded by National Institutes of Health 2018 - 2024
- CaMKK2 Signaling in Osteoarthritis awarded by Indiana University 2020 - 2024
- Notch Signaling in Endochondral Bone Development awarded by National Institutes of Health 2018 - 2023
- Notch Signaling in non-myogenic mesenchymal cells regulates muscle development awarded by National Institutes of Health 2020 - 2023
- Notch Signaling in Joint Cartilage Maintenance and Arthritis awarded by National Institutes of Health 2012 - 2022
- Zeiss Lightsheet Upgrade to Expand Imaging Capabilities awarded by National Institutes of Health 2021 - 2022
- The role of proline metabolism during osteoblast differentiation and bone formation awarded by University of Texas Southwestern Medical Center 2021
- Role of Glutamine Metabolism during Osteoblast Differentiation and Bone Formation awarded by University of Texas Southwestern Medical Center 2021
- Genetics Training Grant awarded by National Institutes of Health 1979 - 2020
- Organization and Function of Cellular Structure awarded by National Institutes of Health 1975 - 2020
- Investigation of the roles for CaVa1.2 in non-excitable tissue during development awarded by Weill Medical College of Cornell University 2016 - 2017
- Study of Osteoblast Regulation in TNF-Mediated Bone Loss awarded by University of Rochester 2014 - 2016
- Notch Signaling in Cartilage Development awarded by National Institutes of Health 2010 - 2015
- Publications & Artistic Works
-
Selected Publications
-
Books
-
Hilton, M. J. (2021). Preface (Vol. 2230, p. v).
-
Hilton, M. J. (Ed.). (2014). Skeletal Development and Repair. Humana Press. https://doi.org/10.1007/978-1-62703-989-5Full Text
-
-
Academic Articles
-
Rabjohns, E. M., Rampersad, R. R., Ghosh, A., Hurst, K., Eudy, A. M., Brozowski, J. M., … Tarrant, T. K. (2023). Aged G Protein-Coupled Receptor Kinase 3 (Grk3)-Deficient Mice Exhibit Enhanced Osteoclastogenesis and Develop Bone Lesions Analogous to Human Paget's Disease of Bone. Cells, 12(7). https://doi.org/10.3390/cells12070981Full Text Link to Item
-
Wang, N., Wen, Q., Maharjan, S., Mirando, A. J., Qi, Y., Hilton, M. J., & Spritzer, C. E. (2022). Magic angle effect on diffusion tensor imaging in ligament and brain. Magn Reson Imaging, 92, 243–250. https://doi.org/10.1016/j.mri.2022.06.008Full Text Link to Item
-
Liao, Y., Ren, Y., Luo, X., Mirando, A. J., Long, J. T., Leinroth, A., … Hilton, M. J. (2022). Interleukin-6 signaling mediates cartilage degradation and pain in posttraumatic osteoarthritis in a sex-specific manner. Sci Signal, 15(744), eabn7082. https://doi.org/10.1126/scisignal.abn7082Full Text Link to Item
-
Ruderman, L., Leinroth, A., Rueckert, H., Tabarestani, T., Baker, R., Levin, J., … Anakwenze, O. (2022). Histologic Differences in Human Rotator Cuff Muscle Based on Tear Characteristics. J Bone Joint Surg Am, 104(13), 1148–1156. https://doi.org/10.2106/JBJS.21.01304Full Text Link to Item
-
Leinroth, A. P., Mirando, A. J., Rouse, D., Kobayahsi, Y., Tata, P. R., Rueckert, H. E., … Hilton, M. J. (2022). Identification of distinct non-myogenic skeletal-muscle-resident mesenchymal cell populations. Cell Rep, 39(6), 110785. https://doi.org/10.1016/j.celrep.2022.110785Full Text Link to Item
-
Long, J. T., Leinroth, A., Liao, Y., Ren, Y., Mirando, A. J., Nguyen, T., … Hilton, M. J. (2022). Hypertrophic chondrocytes serve as a reservoir for marrow-associated skeletal stem and progenitor cells, osteoblasts, and adipocytes during skeletal development. Elife, 11. https://doi.org/10.7554/eLife.76932Full Text Link to Item
-
Brozowski, J. M., Timoshchenko, R. G., Serafin, D. S., Allyn, B., Koontz, J., Rabjohns, E. M., … Tarrant, T. K. (2022). G protein-coupled receptor kinase 3 modulates mesenchymal stem cell proliferation and differentiation through sphingosine-1-phosphate receptor regulation. Stem Cell Res Ther, 13(1), 37. https://doi.org/10.1186/s13287-022-02715-4Full Text Open Access Copy Link to Item
-
Sharma, D., Mirando, A. J., Leinroth, A., Long, J. T., Karner, C. M., & Hilton, M. J. (2021). HES1 is a novel downstream modifier of the SHH-GLI3 Axis in the development of preaxial polydactyly. Plos Genet, 17(12), e1009982. https://doi.org/10.1371/journal.pgen.1009982Full Text Link to Item
-
Abar, B., Kelly, C., Pham, A., Allen, N., Barber, H., Kelly, A., … Adams, S. B. (2021). Effect of surface topography on in vitro osteoblast function and mechanical performance of 3D printed titanium. J Biomed Mater Res A, 109(10), 1792–1802. https://doi.org/10.1002/jbm.a.37172Full Text Open Access Copy Link to Item
-
Liao, Y., Ren, Y., Luo, X., Long, J. T., Mirando, A. J., Leinroth, A. P., … Hilton, M. J. (2021). Interleukin-6 Signaling Mediates Cartilage Degradation and Pain in Post-Traumatic Osteoarthritis. https://doi.org/10.1101/2021.09.08.459303Full Text
-
Wang, K., Donnelly, C. R., Jiang, C., Liao, Y., Luo, X., Tao, X., … Ji, R.-R. (2021). STING suppresses bone cancer pain via immune and neuronal modulation. Nat Commun, 12(1), 4558. https://doi.org/10.1038/s41467-021-24867-2Full Text Link to Item
-
Lee, C.-L., Brock, K. D., Hasapis, S., Zhang, D., Sibley, A. B., Qin, X., … Kirsch, D. G. (2021). Whole-Exome Sequencing of Radiation-Induced Thymic Lymphoma in Mouse Models Identifies Notch1 Activation as a Driver of p53 Wild-Type Lymphoma. Cancer Res, 81(14), 3777–3790. https://doi.org/10.1158/0008-5472.CAN-20-2823Full Text Link to Item
-
Guo, W., Spiller, K. V., Tang, J., Karner, C. M., Hilton, M. J., & Wu, C. (2021). Hypoxia depletes contaminating CD45+ hematopoietic cells from murine bone marrow stromal cell (BMSC) cultures: Methods for BMSC culture purification. Stem Cell Res, 53, 102317. https://doi.org/10.1016/j.scr.2021.102317Full Text Link to Item
-
Liao, Y., Long, J. T., Gallo, C. J. R., Mirando, A. J., & Hilton, M. J. (2021). Isolation and Culture of Murine Primary Chondrocytes: Costal and Growth Plate Cartilage. Methods Mol Biol, 2230, 415–423. https://doi.org/10.1007/978-1-0716-1028-2_25Full Text Link to Item
-
Mirando, A. J., & Hilton, M. J. (2021). Demineralized Murine Skeletal Histology. Methods Mol Biol, 2230, 283–302. https://doi.org/10.1007/978-1-0716-1028-2_16Full Text Link to Item
-
Sharma, D., Hilton, M. J., & Karner, C. M. (2021). Whole Mount In Situ Hybridization in Murine Tissues. Methods Mol Biol, 2230, 367–376. https://doi.org/10.1007/978-1-0716-1028-2_22Full Text Link to Item
-
Wang, K., Donnelly, C., Jiang, C., Liao, Y., Tao, X., Bang, S., … Ji, R.-R. (2021). STING suppresses cancer pain via immune and neuronal modulation. https://doi.org/10.1101/2021.01.18.426944Full Text
-
Wang, N., Mirando, A. J., Cofer, G., Qi, Y., Hilton, M. J., & Johnson, G. A. (2020). Characterization complex collagen fiber architecture in knee joint using high-resolution diffusion imaging. Magn Reson Med, 84(2), 908–919. https://doi.org/10.1002/mrm.28181Full Text Open Access Copy Link to Item
-
Wang, K., Gu, Y., Liao, Y., Bang, S., Donnelly, C. R., Chen, O., … Ji, R.-R. (2020). PD-1 blockade inhibits osteoclast formation and murine bone cancer pain. J Clin Invest, 130(7), 3603–3620. https://doi.org/10.1172/JCI133334Full Text Link to Item
-
Sharma, D., Mirando, A., Leinroth, A., Long, J., Karner, C., & Hilton, M. (2020). HES1 is a Critical Mediator of the SHH-GLI3 Axis in Regulating Digit Number. https://doi.org/10.1101/2020.06.17.158501Full Text
-
Liu, Z., Easson, G. W. D., Zhao, J., Makki, N., Ahituv, N., Hilton, M. J., … Gray, R. S. (2019). Dysregulation of STAT3 signaling is associated with endplate-oriented herniations of the intervertebral disc in Adgrg6 mutant mice. Plos Genet, 15(10), e1008096. https://doi.org/10.1371/journal.pgen.1008096Full Text Link to Item
-
Catheline, S. E., Hoak, D., Chang, M., Ketz, J. P., Hilton, M. J., Zuscik, M. J., & Jonason, J. H. (2019). Chondrocyte-Specific RUNX2 Overexpression Accelerates Post-traumatic Osteoarthritis Progression in Adult Mice. J Bone Miner Res, 34(9), 1676–1689. https://doi.org/10.1002/jbmr.3737Full Text Link to Item
-
Cao, C., Oswald, A. B., Fabella, B. A., Ren, Y., Rodriguiz, R., Trainor, G., … Pitt, G. S. (2019). The CaV1.2 L-type calcium channel regulates bone homeostasis in the middle and inner ear. Bone, 125, 160–168. https://doi.org/10.1016/j.bone.2019.05.024Full Text Link to Item
-
Wang, N., Mirando, A. J., Cofer, G., Qi, Y., Hilton, M. J., & Johnson, G. A. (2019). Diffusion tractography of the rat knee at microscopic resolution. Magn Reson Med, 81(6), 3775–3786. https://doi.org/10.1002/mrm.27652Full Text Link to Item
-
Yu, Y., Newman, H., Shen, L., Sharma, D., Hu, G., Mirando, A. J., … Karner, C. M. (2019). Glutamine Metabolism Regulates Proliferation and Lineage Allocation in Skeletal Stem Cells. Cell Metab, 29(4), 966-978.e4. https://doi.org/10.1016/j.cmet.2019.01.016Full Text Link to Item
-
Tsushima, H., Tang, Y. J., Puviindran, V., Hsu, S.-H., Nadesan, P., Yu, C., … Alman, B. A. (2018). Intracellular biosynthesis of lipids and cholesterol by Scap and Insig in mesenchymal cells regulates long bone growth and chondrocyte homeostasis. Development, 145(13). https://doi.org/10.1242/dev.162396Full Text Link to Item
-
Zheng, Y., Liu, C., Ni, L., Liu, Z., Mirando, A. J., Lin, J., … Chen, J. (2018). Cell type-specific effects of Notch signaling activation on intervertebral discs: Implications for intervertebral disc degeneration. J Cell Physiol, 233(7), 5431–5440. https://doi.org/10.1002/jcp.26385Full Text Link to Item
-
Cao, C., Ren, Y., Barnett, A. S., Mirando, A. J., Rouse, D., Mun, S. H., … Pitt, G. S. (2017). Increased Ca2+ signaling through CaV1.2 promotes bone formation and prevents estrogen deficiency-induced bone loss. Jci Insight, 2(22). https://doi.org/10.1172/jci.insight.95512Full Text Link to Item
-
Lawal, R. A., Zhou, X., Batey, K., Hoffman, C. M., Georger, M. A., Radtke, F., … Calvi, L. M. (2017). The Notch Ligand Jagged1 Regulates the Osteoblastic Lineage by Maintaining the Osteoprogenitor Pool. J Bone Miner Res, 32(6), 1320–1331. https://doi.org/10.1002/jbmr.3106Full Text Link to Item
-
Dar, Q.-A., Schott, E. M., Catheline, S. E., Maynard, R. D., Liu, Z., Kamal, F., … Zuscik, M. J. (2017). Daily oral consumption of hydrolyzed type 1 collagen is chondroprotective and anti-inflammatory in murine posttraumatic osteoarthritis. Plos One, 12(4), e0174705. https://doi.org/10.1371/journal.pone.0174705Full Text Link to Item
-
Zhang, H., Sun, W., Li, X., Wang, M., Boyce, B. F., Hilton, M. J., & Xing, L. (2016). Use of Hes1-GFP reporter mice to assess activity of the Hes1 promoter in bone cells under chronic inflammation. Bone, 90, 80–89. https://doi.org/10.1016/j.bone.2016.06.003Full Text Link to Item
-
Hamada, D., Maynard, R., Schott, E., Drinkwater, C. J., Ketz, J. P., Kates, S. L., … Mooney, R. A. (2016). Suppressive Effects of Insulin on Tumor Necrosis Factor-Dependent Early Osteoarthritic Changes Associated With Obesity and Type 2 Diabetes Mellitus. Arthritis Rheumatol, 68(6), 1392–1402. https://doi.org/10.1002/art.39561Full Text Link to Item
-
Rutkowski, T. P., Kohn, A., Sharma, D., Ren, Y., Mirando, A. J., & Hilton, M. J. (2016). HES factors regulate specific aspects of chondrogenesis and chondrocyte hypertrophy during cartilage development. J Cell Sci, 129(11), 2145–2155. https://doi.org/10.1242/jcs.181271Full Text Link to Item
-
Shang, X., Wang, J., Luo, Z., Wang, Y., Morandi, M. M., Marymont, J. V., … Dong, Y. (2016). Notch signaling indirectly promotes chondrocyte hypertrophy via regulation of BMP signaling and cell cycle arrest. Sci Rep, 6, 25594. https://doi.org/10.1038/srep25594Full Text Link to Item
-
Liu, Z., Ren, Y., Mirando, A. J., Wang, C., Zuscik, M. J., O’Keefe, R. J., & Hilton, M. J. (2016). Notch signaling in postnatal joint chondrocytes, but not subchondral osteoblasts, is required for articular cartilage and joint maintenance. Osteoarthritis Cartilage, 24(4), 740–751. https://doi.org/10.1016/j.joca.2015.10.015Full Text Link to Item
-
Wang, C., Inzana, J. A., Mirando, A. J., Ren, Y., Liu, Z., Shen, J., … Hilton, M. J. (2016). NOTCH signaling in skeletal progenitors is critical for fracture repair. J Clin Invest, 126(4), 1471–1481. https://doi.org/10.1172/JCI80672Full Text Link to Item
-
Zhang, Y., Sheu, T.-J., Hoak, D., Shen, J., Hilton, M. J., Zuscik, M. J., … O’Keefe, R. J. (2016). CCN1 Regulates Chondrocyte Maturation and Cartilage Development. J Bone Miner Res, 31(3), 549–559. https://doi.org/10.1002/jbmr.2712Full Text Link to Item
-
Wang, C., Shen, J., Yukata, K., Inzana, J. A., O’Keefe, R. J., Awad, H. A., & Hilton, M. J. (2015). Transient gamma-secretase inhibition accelerates and enhances fracture repair likely via Notch signaling modulation. Bone, 73, 77–89. https://doi.org/10.1016/j.bone.2014.12.007Full Text Link to Item
-
Qiu, T., Xian, L., Crane, J., Wen, C., Hilton, M., Lu, W., … Cao, X. (2015). PTH receptor signaling in osteoblasts regulates endochondral vascularization in maintenance of postnatal growth plate. J Bone Miner Res, 30(2), 309–317. https://doi.org/10.1002/jbmr.2327Full Text Link to Item
-
Kohn, A., Rutkowski, T. P., Liu, Z., Mirando, A. J., Zuscik, M. J., O’Keefe, R. J., & Hilton, M. J. (2015). Notch signaling controls chondrocyte hypertrophy via indirect regulation of Sox9. Bone Res, 3, 15021. https://doi.org/10.1038/boneres.2015.21Full Text Link to Item
-
Dong, Y., Long, T., Wang, C., Mirando, A. J., Chen, J., O’Keefe, R. J., & Hilton, M. J. (2014). NOTCH-Mediated Maintenance and Expansion of Human Bone Marrow Stromal/Stem Cells: A Technology Designed for Orthopedic Regenerative Medicine. Stem Cells Transl Med, 3(12), 1456–1466. https://doi.org/10.5966/sctm.2014-0034Full Text Link to Item
-
Jones, K. B., Pacifici, M., & Hilton, M. J. (2014). Multiple hereditary exostoses (MHE): elucidating the pathogenesis of a rare skeletal disorder through interdisciplinary research. Connect Tissue Res, 55(2), 80–88. https://doi.org/10.3109/03008207.2013.867957Full Text Link to Item
-
Long, T., Zhu, Z., Awad, H. A., Schwarz, E. M., Hilton, M. J., & Dong, Y. (2014). The effect of mesenchymal stem cell sheets on structural allograft healing of critical sized femoral defects in mice. Biomaterials, 35(9), 2752–2759. https://doi.org/10.1016/j.biomaterials.2013.12.039Full Text Link to Item
-
Brown, M. L., Yukata, K., Farnsworth, C. W., Chen, D.-G., Awad, H., Hilton, M. J., … Zuscik, M. J. (2014). Delayed fracture healing and increased callus adiposity in a C57BL/6J murine model of obesity-associated type 2 diabetes mellitus. Plos One, 9(6), e99656. https://doi.org/10.1371/journal.pone.0099656Full Text Link to Item
-
Hilton, M. J. (2014). Preface. Methods in Molecular Biology, 1130. https://doi.org/10.1007/978-1-62703-989_5Full Text
-
Mack, S. A., Maltby, K. M., & Hilton, M. J. (2014). Demineralized murine skeletal histology. Methods Mol Biol, 1130, 165–183. https://doi.org/10.1007/978-1-62703-989-5_12Full Text Link to Item
-
Mack, S. A., Maltby, K. M., & Hilton, M. J. (2014). Demineralized murine skeletal histology. Methods in Molecular Biology, 1130, 165–183. https://doi.org/10.1007/978-1-62703-989-5-12Full Text
-
Mirando, A. J., Dong, Y., Kim, J., & Hilton, M. J. (2014). Isolation and culture of murine primary chondrocytes. Methods Mol Biol, 1130, 267–277. https://doi.org/10.1007/978-1-62703-989-5_20Full Text Link to Item
-
Mirando, A. J., Dong, Y., Kim, J., & Hilton, M. J. (2014). Isolation and culture of murine primary chondrocytes. Methods in Molecular Biology, 1130, 267–277. https://doi.org/10.1007/978-1-62703-989-5-20Full Text
-
Rutkowsky, T., Sharma, D., & Hilton, M. J. (2014). Whole-mount in situ hybridization on murine skeletogenic tissues. Methods Mol Biol, 1130, 193–201. https://doi.org/10.1007/978-1-62703-989-5_14Full Text Link to Item
-
Rutkowsky, T., Sharma, D., & Hilton, M. J. (2014). Whole-mount in situ hybridization on murine skeletogenic tissues. Methods in Molecular Biology, 1130, 193–201. https://doi.org/10.1007/978-1-62703-989-5-14Full Text
-
Gao, L., Sheu, T.-J., Dong, Y., Hoak, D. M., Zuscik, M. J., Schwarz, E. M., … Jonason, J. H. (2013). TAK1 regulates SOX9 expression in chondrocytes and is essential for postnatal development of the growth plate and articular cartilages. J Cell Sci, 126(Pt 24), 5704–5713. https://doi.org/10.1242/jcs.135483Full Text Link to Item
-
Mirando, A. J., Liu, Z., Moore, T., Lang, A., Kohn, A., Osinski, A. M., … Hilton, M. J. (2013). RBP-Jκ-dependent Notch signaling is required for murine articular cartilage and joint maintenance. Arthritis Rheum, 65(10), 2623–2633. https://doi.org/10.1002/art.38076Full Text Link to Item
-
Ju, Y., Li, J., Xie, C., Ritchlin, C. T., Xing, L., Hilton, M. J., & Schwarz, E. M. (2013). Troponin T3 expression in skeletal and smooth muscle is required for growth and postnatal survival: characterization of Tnnt3(tm2a(KOMP)Wtsi) mice. Genesis, 51(9), 667–675. https://doi.org/10.1002/dvg.22407Full Text Link to Item
-
Chen, T., Hilton, M. J., Brown, E. B., Zuscik, M. J., & Awad, H. A. (2013). Engineering superficial zone features in tissue engineered cartilage. Biotechnol Bioeng, 110(5), 1476–1486. https://doi.org/10.1002/bit.24799Full Text Link to Item
-
Dao, D. Y., Jonason, J. H., Zhang, Y., Hsu, W., Chen, D., Hilton, M. J., & O’Keefe, R. J. (2012). Cartilage-specific β-catenin signaling regulates chondrocyte maturation, generation of ossification centers, and perichondrial bone formation during skeletal development. J Bone Miner Res, 27(8), 1680–1694. https://doi.org/10.1002/jbmr.1639Full Text Link to Item
-
Kim, K.-O., Sampson, E. R., Maynard, R. D., O’Keefe, R. J., Chen, D., Drissi, H., … Zuscik, M. J. (2012). Ski inhibits TGF-β/phospho-Smad3 signaling and accelerates hypertrophic differentiation in chondrocytes. J Cell Biochem, 113(6), 2156–2166. https://doi.org/10.1002/jcb.24089Full Text Link to Item
-
Kohn, A., Dong, Y., Mirando, A. J., Jesse, A. M., Honjo, T., Zuscik, M. J., … Hilton, M. J. (2012). Cartilage-specific RBPjκ-dependent and -independent Notch signals regulate cartilage and bone development. Development, 139(6), 1198–1212. https://doi.org/10.1242/dev.070649Full Text Link to Item
-
Shu, B., Zhang, M., Xie, R., Wang, M., Jin, H., Hou, W., … Chen, D. (2011). BMP2, but not BMP4, is crucial for chondrocyte proliferation and maturation during endochondral bone development. J Cell Sci, 124(Pt 20), 3428–3440. https://doi.org/10.1242/jcs.083659Full Text Link to Item
-
Sampson, E. R., Hilton, M. J., Tian, Y., Chen, D., Schwarz, E. M., Mooney, R. A., … Zuscik, M. J. (2011). Teriparatide as a chondroregenerative therapy for injury-induced osteoarthritis. Sci Transl Med, 3(101), 101ra93. https://doi.org/10.1126/scitranslmed.3002214Full Text Link to Item
-
Papuga, M. O., Kwok, E., You, Z., Rubery, P. T., Dougherty, P. E., Pryhuber, G., … Schwarz, E. M. (2011). TNF is required for the induction but not the maintenance of compression-induced BME signals in murine tail vertebrae: limitations of anti-TNF therapy for degenerative disc disease. J Orthop Res, 29(9), 1367–1374. https://doi.org/10.1002/jor.21370Full Text Link to Item
-
Sampson, E. R., Beck, C. A., Ketz, J., Canary, K. L., Hilton, M. J., Awad, H., … Zuscik, M. J. (2011). Establishment of an index with increased sensitivity for assessing murine arthritis. J Orthop Res, 29(8), 1145–1151. https://doi.org/10.1002/jor.21368Full Text Link to Item
-
Katzel, E. B., Wolenski, M., Loiselle, A. E., Basile, P., Flick, L. M., Langstein, H. N., … O’Keefe, R. J. (2011). Impact of Smad3 loss of function on scarring and adhesion formation during tendon healing. J Orthop Res, 29(5), 684–693. https://doi.org/10.1002/jor.21235Full Text Link to Item
-
Papuga, M. O., Proulx, S. T., Kwok, E., You, Z., Rubery, P. T., Dougherty, P. E., … Schwarz, E. M. (2010). Chronic axial compression of the mouse tail segment induces MRI bone marrow edema changes that correlate with increased marrow vasculature and cellularity. J Orthop Res, 28(9), 1220–1228. https://doi.org/10.1002/jor.21103Full Text Link to Item
-
Gunnell, L. M., Jonason, J. H., Loiselle, A. E., Kohn, A., Schwarz, E. M., Hilton, M. J., & O’Keefe, R. J. (2010). TAK1 regulates cartilage and joint development via the MAPK and BMP signaling pathways. J Bone Miner Res, 25(8), 1784–1797. https://doi.org/10.1002/jbmr.79Full Text Link to Item
-
Dong, Y., Jesse, A. M., Kohn, A., Gunnell, L. M., Honjo, T., Zuscik, M. J., … Hilton, M. J. (2010). RBPjkappa-dependent Notch signaling regulates mesenchymal progenitor cell proliferation and differentiation during skeletal development. Development, 137(9), 1461–1471. https://doi.org/10.1242/dev.042911Full Text Link to Item
-
Dao, D. Y., Yang, X., Flick, L. M., Chen, D., Hilton, M. J., & O’Keefe, R. J. (2010). Axin2 regulates chondrocyte maturation and axial skeletal development. J Orthop Res, 28(1), 89–95. https://doi.org/10.1002/jor.20954Full Text Link to Item
-
Christopher, M. J., Liu, F., Hilton, M. J., Long, F., & Link, D. C. (2009). Suppression of CXCL12 production by bone marrow osteoblasts is a common and critical pathway for cytokine-induced mobilization. Blood, 114(7), 1331–1339. https://doi.org/10.1182/blood-2008-10-184754Full Text Link to Item
-
Crane, D. P., Gromov, K., Li, D., Søballe, K., Wahnes, C., Büchner, H., … Schwarz, E. M. (2009). Efficacy of colistin-impregnated beads to prevent multidrug-resistant A. baumannii implant-associated osteomyelitis. J Orthop Res, 27(8), 1008–1015. https://doi.org/10.1002/jor.20847Full Text Link to Item
-
Metcalf, J. A., Zhang, Y., Hilton, M. J., Long, F., & Ponder, K. P. (2009). Mechanism of shortened bones in mucopolysaccharidosis VII. Mol Genet Metab, 97(3), 202–211. https://doi.org/10.1016/j.ymgme.2009.03.005Full Text Link to Item
-
Yin, Y., White, A. C., Huh, S.-H., Hilton, M. J., Kanazawa, H., Long, F., & Ornitz, D. M. (2008). An FGF-WNT gene regulatory network controls lung mesenchyme development. Dev Biol, 319(2), 426–436. https://doi.org/10.1016/j.ydbio.2008.04.009Full Text Link to Item
-
Wu, X., Tu, X., Joeng, K. S., Hilton, M. J., Williams, D. A., & Long, F. (2008). Rac1 activation controls nuclear localization of beta-catenin during canonical Wnt signaling. Cell, 133(2), 340–353. https://doi.org/10.1016/j.cell.2008.01.052Full Text Link to Item
-
Bai, S., Kopan, R., Zou, W., Hilton, M. J., Ong, C.-T., Long, F., … Teitelbaum, S. L. (2008). NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells. J Biol Chem, 283(10), 6509–6518. https://doi.org/10.1074/jbc.M707000200Full Text Link to Item
-
Hilton, M. J., Tu, X., Wu, X., Bai, S., Zhao, H., Kobayashi, T., … Long, F. (2008). Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med, 14(3), 306–314. https://doi.org/10.1038/nm1716Full Text Link to Item
-
Hilton, M. J., Tu, X., & Long, F. (2007). Tamoxifen-inducible gene deletion reveals a distinct cell type associated with trabecular bone, and direct regulation of PTHrP expression and chondrocyte morphology by Ihh in growth region cartilage. Dev Biol, 308(1), 93–105. https://doi.org/10.1016/j.ydbio.2007.05.011Full Text Link to Item
-
Hilton, M. J., & Wells, D. E. (2007). Chromosome 8. https://doi.org/10.1002/9780470015902.a0005817.pub2Full Text
-
Hilton, M. J., Tu, X., Cook, J., Hu, H., & Long, F. (2005). Ihh controls cartilage development by antagonizing Gli3, but requires additional effectors to regulate osteoblast and vascular development. Development, 132(19), 4339–4351. https://doi.org/10.1242/dev.02025Full Text Link to Item
-
Hilton, M. J., Gutiérrez, L., Martinez, D. A., & Wells, D. E. (2005). EXT1 regulates chondrocyte proliferation and differentiation during endochondral bone development. Bone, 36(3), 379–386. https://doi.org/10.1016/j.bone.2004.09.025Full Text Link to Item
-
Hu, H., Hilton, M. J., Tu, X., Yu, K., Ornitz, D. M., & Long, F. (2005). Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development, 132(1), 49–60. https://doi.org/10.1242/dev.01564Full Text Link to Item
-
Hilton, M. J., Sawyer, J. M., Gutiérrez, L., Hogart, A., Kung, T. C., & Wells, D. E. (2002). Analysis of novel and recurrent mutations responsible for the tricho-rhino-phalangeal syndromes. J Hum Genet, 47(3), 103–106. https://doi.org/10.1007/s100380200010Full Text Link to Item
-
Hilton, M. J., Gutiérrez, L., Zhang, L., Moreno, P. A., Reddy, M., Brown, N., … Wells, D. E. (2001). An integrated physical map of 8q22-q24: use in positional cloning and deletion analysis of Langer-Giedion syndrome. Genomics, 71(2), 192–199. https://doi.org/10.1006/geno.2000.6438Full Text Link to Item
-
-
Book Sections
-
Hilton, M. J. (2021). Skeletal Development and Repair Methods and Protocols Second Edition Preface. In SKELETAL DEVELOPMENT AND REPAIR, 2 EDITION (Vol. 2230, pp. V–V).Link to Item
-
Ren, Y., Liao, Y., & Hilton, M. J. (2020). Notch signaling in cartilage development and disease. In Encyclopedia of Bone Biology (pp. 589–604).
-
Hilton, M. J., & Lyons, K. M. (2019). Application of genetically modified animals in bone research. In Principles of Bone Biology (pp. 1787–1800). https://doi.org/10.1016/B978-0-12-814841-9.00077-4Full Text
-
Karner, C. M., & Hilton, M. J. (2018). Endochondral ossification. In Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism (pp. 12–19). https://doi.org/10.1002/9781119266594.ch2Full Text
-
Hilton, M. J. (2014). Skeletal Development and Repair Methods and Protocols Preface. In SKELETAL DEVELOPMENT AND REPAIR: METHODS AND PROTOCOLS (Vol. 1130, pp. V–V).Link to Item
-
Rutkowsky, T., Sharma, D., & Hilton, M. J. (2014). Whole-Mount In Situ Hybridization on Murine Skeletogenic Tissues (vol 1130, pg 193, 2014). In SKELETAL DEVELOPMENT AND REPAIR: METHODS AND PROTOCOLS (Vol. 1130, pp. E1–E1).Link to Item
-
-
Other Articles
-
Lee, C.-L., Brock, K. D., Hasapis, S., Zhang, D., Sibley, A. B., Qin, X., … Kirsch, D. G. (2023). Supplementary Table 4 from Whole-Exome Sequencing of Radiation-Induced Thymic Lymphoma in Mouse Models Identifies Notch1 Activation as a Driver of p53 Wild-Type Lymphoma. https://doi.org/10.1158/0008-5472.22428720.v1Full Text
-
Lee, C.-L., Brock, K. D., Hasapis, S., Zhang, D., Sibley, A. B., Qin, X., … Kirsch, D. G. (2023). Supplementary Table 2 from Whole-Exome Sequencing of Radiation-Induced Thymic Lymphoma in Mouse Models Identifies Notch1 Activation as a Driver of p53 Wild-Type Lymphoma. https://doi.org/10.1158/0008-5472.22428726Full Text
-
Lee, C.-L., Brock, K. D., Hasapis, S., Zhang, D., Sibley, A. B., Qin, X., … Kirsch, D. G. (2023). Supplementary Table 6 from Whole-Exome Sequencing of Radiation-Induced Thymic Lymphoma in Mouse Models Identifies Notch1 Activation as a Driver of p53 Wild-Type Lymphoma. https://doi.org/10.1158/0008-5472.22428711Full Text
-
Lee, C.-L., Brock, K. D., Hasapis, S., Zhang, D., Sibley, A. B., Qin, X., … Kirsch, D. G. (2023). Data from Whole-Exome Sequencing of Radiation-Induced Thymic Lymphoma in Mouse Models Identifies Notch1 Activation as a Driver of p53 Wild-Type Lymphoma. https://doi.org/10.1158/0008-5472.c.6513108.v1Full Text
-
Lee, C.-L., Brock, K. D., Hasapis, S., Zhang, D., Sibley, A. B., Qin, X., … Kirsch, D. G. (2023). Supplementary Figures from Whole-Exome Sequencing of Radiation-Induced Thymic Lymphoma in Mouse Models Identifies Notch1 Activation as a Driver of p53 Wild-Type Lymphoma. https://doi.org/10.1158/0008-5472.22428732Full Text
-
Lee, C.-L., Brock, K. D., Hasapis, S., Zhang, D., Sibley, A. B., Qin, X., … Kirsch, D. G. (2023). Supplementary Table 1 from Whole-Exome Sequencing of Radiation-Induced Thymic Lymphoma in Mouse Models Identifies Notch1 Activation as a Driver of p53 Wild-Type Lymphoma. https://doi.org/10.1158/0008-5472.22428729.v1Full Text
-
Lee, C.-L., Brock, K. D., Hasapis, S., Zhang, D., Sibley, A. B., Qin, X., … Kirsch, D. G. (2023). Supplementary Table 4 from Whole-Exome Sequencing of Radiation-Induced Thymic Lymphoma in Mouse Models Identifies Notch1 Activation as a Driver of p53 Wild-Type Lymphoma. https://doi.org/10.1158/0008-5472.22428720Full Text
-
Lee, C.-L., Brock, K. D., Hasapis, S., Zhang, D., Sibley, A. B., Qin, X., … Kirsch, D. G. (2023). Supplementary Table 6 from Whole-Exome Sequencing of Radiation-Induced Thymic Lymphoma in Mouse Models Identifies Notch1 Activation as a Driver of p53 Wild-Type Lymphoma. https://doi.org/10.1158/0008-5472.22428711.v1Full Text
-
Lee, C.-L., Brock, K. D., Hasapis, S., Zhang, D., Sibley, A. B., Qin, X., … Kirsch, D. G. (2023). Supplementary Table 3 from Whole-Exome Sequencing of Radiation-Induced Thymic Lymphoma in Mouse Models Identifies Notch1 Activation as a Driver of p53 Wild-Type Lymphoma. https://doi.org/10.1158/0008-5472.22428723.v1Full Text
-
Lee, C.-L., Brock, K. D., Hasapis, S., Zhang, D., Sibley, A. B., Qin, X., … Kirsch, D. G. (2023). Supplementary Table 3 from Whole-Exome Sequencing of Radiation-Induced Thymic Lymphoma in Mouse Models Identifies Notch1 Activation as a Driver of p53 Wild-Type Lymphoma. https://doi.org/10.1158/0008-5472.22428723Full Text
-
Lee, C.-L., Brock, K. D., Hasapis, S., Zhang, D., Sibley, A. B., Qin, X., … Kirsch, D. G. (2023). Supplementary Table 1 from Whole-Exome Sequencing of Radiation-Induced Thymic Lymphoma in Mouse Models Identifies Notch1 Activation as a Driver of p53 Wild-Type Lymphoma. https://doi.org/10.1158/0008-5472.22428729Full Text
-
Lee, C.-L., Brock, K. D., Hasapis, S., Zhang, D., Sibley, A. B., Qin, X., … Kirsch, D. G. (2023). Supplementary Table 2 from Whole-Exome Sequencing of Radiation-Induced Thymic Lymphoma in Mouse Models Identifies Notch1 Activation as a Driver of p53 Wild-Type Lymphoma. https://doi.org/10.1158/0008-5472.22428726.v1Full Text
-
Lee, C.-L., Brock, K. D., Hasapis, S., Zhang, D., Sibley, A. B., Qin, X., … Kirsch, D. G. (2023). Supplementary Table 5 from Whole-Exome Sequencing of Radiation-Induced Thymic Lymphoma in Mouse Models Identifies Notch1 Activation as a Driver of p53 Wild-Type Lymphoma. https://doi.org/10.1158/0008-5472.22428714.v1Full Text
-
Lee, C.-L., Brock, K. D., Hasapis, S., Zhang, D., Sibley, A. B., Qin, X., … Kirsch, D. G. (2023). Supplementary Figures from Whole-Exome Sequencing of Radiation-Induced Thymic Lymphoma in Mouse Models Identifies Notch1 Activation as a Driver of p53 Wild-Type Lymphoma. https://doi.org/10.1158/0008-5472.22428732.v1Full Text
-
Lee, C.-L., Brock, K. D., Hasapis, S., Zhang, D., Sibley, A. B., Qin, X., … Kirsch, D. G. (2023). Supplementary Table 5 from Whole-Exome Sequencing of Radiation-Induced Thymic Lymphoma in Mouse Models Identifies Notch1 Activation as a Driver of p53 Wild-Type Lymphoma. https://doi.org/10.1158/0008-5472.22428714Full Text
-
-
Conference Papers
-
Roston, R. A., Mirando, A. J., McLellan, W. A., Pabst, D. A., Hilton, M. J., & Roth, V. L. (2021). Sutural structure in a telescoped skull: the maxillo-frontal suture in Tursiops truncatus. In Integrative and Comparative Biology (Vol. 61, pp. E764–E764).Link to Item
-
Cao, C., Ren, Y., Mirando, A. J., Barnett, A., Rouse, D., Mun, S. H., … Pitt, G. S. (2017). Increased Ca2+signaling through altered CaV1.2 L-type Ca2+channel activity promotes bone formation and prevents estrogen deficiency-induced bone loss. In Journal of Bone and Mineral Research (Vol. 32, pp. S31–S31). Denver, CO: WILEY.Link to Item
-
Kamal, F., Schott, E. M., Carlson, E. L., El-Quadi, M., Le Bleu, H. K., Hilton, M. J., … Zuscik, M. J. (2017). Chondrocyte PTH1R anti-hypertrophic signaling is essential for articular cartilage maintenance and protection post trauma. In Osteoarthritis and Cartilage (Vol. 25, pp. S13–S14). Elsevier BV. https://doi.org/10.1016/j.joca.2017.02.037Full Text
-
Dart, Q.-A., Maynard, R. D., Liu, Z., Schott, E. M., Catheline, S., Mooney, R. A., … Zuscik, M. J. (2016). ORAL HYDROLYZED TYPE 1 COLLAGEN INDUCES CHONDROREGENERATION AND INHIBITS SYNOVIAL INFLAMMATION IN MURINE POSTTRAUMATIC OSTEOARTHRITIS. In Osteoarthritis and Cartilage (Vol. 24, pp. S532–S533). Amsterdam, NETHERLANDS: ELSEVIER SCI LTD.Link to Item
-
Hilton, M. J. (2013). Mouse models of joint disorders. In Osteoarthritis and Cartilage (Vol. 21, pp. S6–S6). Elsevier BV. https://doi.org/10.1016/j.joca.2013.02.030Full Text
-
Metcalf, J. A., Zhang, Y., Hilton, M. J., Long, F., & Ponder, K. P. (2009). Mechanism of Shortened Bones in Mucopolysaccharidosis VII. In Molecular Therapy (Vol. 17, pp. S343–S343). San Diego, CA: NATURE PUBLISHING GROUP.Link to Item
-
Christopher, M. J., Hilton, M. J., Long, F., & Link, D. C. (2007). Suppression of CXCL12 production by bone marrow osteoblasts is a common and critical pathway for cytokine-incluced mobilization. In Blood (Vol. 110, pp. 72A-72A). Atlanta, GA: AMER SOC HEMATOLOGY.Link to Item
-
Hilton, M. J., Bai, S., Kopan, R., Ross, F. P., Teitelbaum, S. L., & Long, F. (2006). Notch signaling represses osteoblast activity but promotes osteoclast function in vivo. In Journal of Bone and Mineral Research (Vol. 21, pp. S66–S66). Philadelphia, PA: AMER SOC BONE & MINERAL RES.Link to Item
-
Hilton, M. J., & Long, F. (2005). Temporal control of gene deletion in the cartilage using a tamoxifen inducible Cre transgenic mouse. In Journal of Bone and Mineral Research (Vol. 20, pp. S39–S39). Nashville, TN: AMER SOC BONE & MINERAL RES.Link to Item
-
-
- Teaching & Mentoring
-
Recent Courses
-
Advising & Mentoring
Available to mentor:
- Faculty
- PhD
- Post-Doc
- Scholarly, Clinical, & Service Activities
-
Service to the Profession
Some information on this profile has been compiled automatically from Duke databases and external sources. (Our About page explains how this works.) If you see a problem with the information, please write to Scholars@Duke and let us know. We will reply promptly.