Skip to main content

Proteomic and Biochemical Studies of Lysine Malonylation Suggest Its Malonic Aciduria-associated Regulatory Role in Mitochondrial Function and Fatty Acid Oxidation.

Publication ,  Journal Article
Colak, G; Pougovkina, O; Dai, L; Tan, M; Te Brinke, H; Huang, H; Cheng, Z; Park, J; Wan, X; Liu, X; Yue, WW; Wanders, RJA; Locasale, JW ...
Published in: Mol Cell Proteomics
November 2015

The protein substrates of sirtuin 5-regulated lysine malonylation (Kmal) remain unknown, hindering its functional analysis. In this study, we carried out proteomic screening, which identified 4042 Kmal sites on 1426 proteins in mouse liver and 4943 Kmal sites on 1822 proteins in human fibroblasts. Increased malonyl-CoA levels in malonyl-CoA decarboxylase (MCD)-deficient cells induces Kmal levels in substrate proteins. We identified 461 Kmal sites showing more than a 2-fold increase in response to MCD deficiency as well as 1452 Kmal sites detected only in MCD-/- fibroblast but not MCD+/+ cells, suggesting a pathogenic role of Kmal in MCD deficiency. Cells with increased lysine malonylation displayed impaired mitochondrial function and fatty acid oxidation, suggesting that lysine malonylation plays a role in pathophysiology of malonic aciduria. Our study establishes an association between Kmal and a genetic disease and offers a rich resource for elucidating the contribution of the Kmal pathway and malonyl-CoA to cellular physiology and human diseases.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Mol Cell Proteomics

DOI

EISSN

1535-9484

Publication Date

November 2015

Volume

14

Issue

11

Start / End Page

3056 / 3071

Location

United States

Related Subject Headings

  • Sirtuins
  • Oxidation-Reduction
  • Models, Molecular
  • Mitochondria
  • Mice, Knockout
  • Mice
  • Methylmalonic Acid
  • Metabolism, Inborn Errors
  • Malonyl Coenzyme A
  • Malonates
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Colak, G., Pougovkina, O., Dai, L., Tan, M., Te Brinke, H., Huang, H., … Zhao, Y. (2015). Proteomic and Biochemical Studies of Lysine Malonylation Suggest Its Malonic Aciduria-associated Regulatory Role in Mitochondrial Function and Fatty Acid Oxidation. Mol Cell Proteomics, 14(11), 3056–3071. https://doi.org/10.1074/mcp.M115.048850
Colak, Gozde, Olga Pougovkina, Lunzhi Dai, Minjia Tan, Heleen Te Brinke, He Huang, Zhongyi Cheng, et al. “Proteomic and Biochemical Studies of Lysine Malonylation Suggest Its Malonic Aciduria-associated Regulatory Role in Mitochondrial Function and Fatty Acid Oxidation.Mol Cell Proteomics 14, no. 11 (November 2015): 3056–71. https://doi.org/10.1074/mcp.M115.048850.
Colak G, Pougovkina O, Dai L, Tan M, Te Brinke H, Huang H, et al. Proteomic and Biochemical Studies of Lysine Malonylation Suggest Its Malonic Aciduria-associated Regulatory Role in Mitochondrial Function and Fatty Acid Oxidation. Mol Cell Proteomics. 2015 Nov;14(11):3056–71.
Colak, Gozde, et al. “Proteomic and Biochemical Studies of Lysine Malonylation Suggest Its Malonic Aciduria-associated Regulatory Role in Mitochondrial Function and Fatty Acid Oxidation.Mol Cell Proteomics, vol. 14, no. 11, Nov. 2015, pp. 3056–71. Pubmed, doi:10.1074/mcp.M115.048850.
Colak G, Pougovkina O, Dai L, Tan M, Te Brinke H, Huang H, Cheng Z, Park J, Wan X, Liu X, Yue WW, Wanders RJA, Locasale JW, Lombard DB, de Boer VCJ, Zhao Y. Proteomic and Biochemical Studies of Lysine Malonylation Suggest Its Malonic Aciduria-associated Regulatory Role in Mitochondrial Function and Fatty Acid Oxidation. Mol Cell Proteomics. 2015 Nov;14(11):3056–3071.

Published In

Mol Cell Proteomics

DOI

EISSN

1535-9484

Publication Date

November 2015

Volume

14

Issue

11

Start / End Page

3056 / 3071

Location

United States

Related Subject Headings

  • Sirtuins
  • Oxidation-Reduction
  • Models, Molecular
  • Mitochondria
  • Mice, Knockout
  • Mice
  • Methylmalonic Acid
  • Metabolism, Inborn Errors
  • Malonyl Coenzyme A
  • Malonates