Skip to main content
release_alert
Welcome to the new Scholars 3.0! Read about new features and let us know what you think.
cancel
Journal cover image

Stabilization of new carbon inputs rather than old carbon decomposition determines soil organic carbon shifts following woody or herbaceous vegetation transitions

Publication ,  Journal Article
Eclesia, RP; Jobbagy, EG; Jackson, RB; Rizzotto, M; Piñeiro, G
Published in: Plant and Soil
December 1, 2016

Background and aims: Although numerous studies have quantified the effects of land-use changes on soil organic carbon (SOC) stocks, few have examined simultaneously the weight of carbon (C) inputs vs. outputs in shaping these changes. We quantified the relative importance of soil C inputs and outputs in determining SOC changes following the conversion of natural ecosystems to pastures or tree plantations, and evaluated them in light of variations in biomass production, its quality (C:N) and above/belowground allocation patterns. Methods: We sampled soils up to one-meter depth under native grasslands or forests and compared them to adjacent sites with pastures or plantations to estimate the proportion of new SOC (SOCnew) retained in the soil and the decomposition rates of old SOC (kSOC-old) based on δ13C shifts. We also analyzed these changes in the particulate organic matter fraction (POM) and estimated above and belowground net primary production (ANPP and BNPP) from satellite images, as well as changes in vegetation and soil’s C:N ratios. Results: The conversion of grasslands to tree plantations decreased total SOC contents while the conversion of forests to pastures increased SOC contents in the topsoil but decreased them in deep layers, maintaining similar soil stocks up to 1 m. Changes in POM were less important and occurred only in the topsoil after cultivating pastures, following SOC changes. Surprisingly, both land-use trajectories showed similar decomposition rates in the topsoil and therefore overall SOC changes were not correlated with C outputs (kSOC-old) but were significantly correlated with C inputs and their stabilization as SOCnew (similar results were obtained for the POM fraction). Pastures although decreased ANPP (as compared to forest) they increased belowground allocation and C:N ratios of their inputs to the soil, probably favoring the retention and stabilization of their new C inputs. In contrast, tree plantations increased ANPP but decreased BNPP (as compared to grasslands) and scarcely accumulated SOCnew probably as a result of the high C retention in standing biomass. Conclusions: Our results suggest that SOC changes are mainly controlled by the quantity and quality of C inputs and their retention in the soil, rather than by C outputs in these perennial subtropical ecosystems.

Published In

Plant and Soil

DOI

EISSN

1573-5036

ISSN

0032-079X

Publication Date

December 1, 2016

Volume

409

Issue

1-2

Start / End Page

99 / 116

Related Subject Headings

  • Agronomy & Agriculture
  • 07 Agricultural and Veterinary Sciences
  • 06 Biological Sciences
  • 05 Environmental Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Eclesia, R. P., Jobbagy, E. G., Jackson, R. B., Rizzotto, M., & Piñeiro, G. (2016). Stabilization of new carbon inputs rather than old carbon decomposition determines soil organic carbon shifts following woody or herbaceous vegetation transitions. Plant and Soil, 409(1–2), 99–116. https://doi.org/10.1007/s11104-016-2951-9
Eclesia, R. P., E. G. Jobbagy, R. B. Jackson, M. Rizzotto, and G. Piñeiro. “Stabilization of new carbon inputs rather than old carbon decomposition determines soil organic carbon shifts following woody or herbaceous vegetation transitions.” Plant and Soil 409, no. 1–2 (December 1, 2016): 99–116. https://doi.org/10.1007/s11104-016-2951-9.
Eclesia RP, Jobbagy EG, Jackson RB, Rizzotto M, Piñeiro G. Stabilization of new carbon inputs rather than old carbon decomposition determines soil organic carbon shifts following woody or herbaceous vegetation transitions. Plant and Soil. 2016 Dec 1;409(1–2):99–116.
Eclesia, R. P., et al. “Stabilization of new carbon inputs rather than old carbon decomposition determines soil organic carbon shifts following woody or herbaceous vegetation transitions.” Plant and Soil, vol. 409, no. 1–2, Dec. 2016, pp. 99–116. Scopus, doi:10.1007/s11104-016-2951-9.
Eclesia RP, Jobbagy EG, Jackson RB, Rizzotto M, Piñeiro G. Stabilization of new carbon inputs rather than old carbon decomposition determines soil organic carbon shifts following woody or herbaceous vegetation transitions. Plant and Soil. 2016 Dec 1;409(1–2):99–116.
Journal cover image

Published In

Plant and Soil

DOI

EISSN

1573-5036

ISSN

0032-079X

Publication Date

December 1, 2016

Volume

409

Issue

1-2

Start / End Page

99 / 116

Related Subject Headings

  • Agronomy & Agriculture
  • 07 Agricultural and Veterinary Sciences
  • 06 Biological Sciences
  • 05 Environmental Sciences