Skip to main content
Journal cover image

Low-intensity frequent fires in coniferous forests transform soil organic matter in ways that may offset ecosystem carbon losses.

Publication ,  Journal Article
Pellegrini, AFA; Caprio, AC; Georgiou, K; Finnegan, C; Hobbie, SE; Hatten, JA; Jackson, RB
Published in: Global change biology
August 2021

The impact of shifting disturbance regimes on soil carbon (C) storage is a key uncertainty in global change research. Wildfires in coniferous forests are becoming more frequent in many regions, potentially causing large C emissions. Repeated low-intensity prescribed fires can mitigate wildfire severity, but repeated combustion may decrease soil C unless compensatory responses stabilize soil organic matter. Here, we tested how 30 years of decadal prescribed burning affected C and nitrogen (N) in plants, detritus, and soils in coniferous forests in the Sierra Nevada mountains, USA. Tree basal area and litter stocks were resilient to fire, but fire reduced forest floor C by 77% (-36.4 Mg C/ha). In mineral soils, fire reduced C that was free from minerals by 41% (-4.4 Mg C/ha) but not C associated with minerals, and only in depths ≤ 5 cm. Fire also transformed the properties of remaining mineral soil organic matter by increasing the proportion of C in a pyrogenic form (from 3.2% to 7.5%) and associated with minerals (from 46% to 58%), suggesting the remaining soil C is more resistant to decomposition. Laboratory assays illustrated that fire reduced microbial CO2 respiration rates by 55% and the activity of eight extracellular enzymes that degrade cellulosic and aromatic compounds by 40-66%. Lower decomposition was correlated with lower inorganic N (-49%), especially ammonium, suggesting N availability is coupled with decomposition. The relative increase in forms of soil organic matter that are resistant to decay or stabilized onto mineral surfaces, and the associated decline in decomposition suggest that low-intensity fires may promote mineral soil C storage in pools with long mean residence times in coniferous forests.

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Global change biology

DOI

EISSN

1365-2486

ISSN

1354-1013

Publication Date

August 2021

Volume

27

Issue

16

Start / End Page

3810 / 3823

Related Subject Headings

  • Tracheophyta
  • Soil
  • Forests
  • Fires
  • Ecosystem
  • Ecology
  • Carbon
  • 41 Environmental sciences
  • 37 Earth sciences
  • 31 Biological sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Pellegrini, A. F. A., Caprio, A. C., Georgiou, K., Finnegan, C., Hobbie, S. E., Hatten, J. A., & Jackson, R. B. (2021). Low-intensity frequent fires in coniferous forests transform soil organic matter in ways that may offset ecosystem carbon losses. Global Change Biology, 27(16), 3810–3823. https://doi.org/10.1111/gcb.15648
Pellegrini, Adam F. A., Anthony C. Caprio, Katerina Georgiou, Colin Finnegan, Sarah E. Hobbie, Jeffery A. Hatten, and Robert B. Jackson. “Low-intensity frequent fires in coniferous forests transform soil organic matter in ways that may offset ecosystem carbon losses.Global Change Biology 27, no. 16 (August 2021): 3810–23. https://doi.org/10.1111/gcb.15648.
Pellegrini AFA, Caprio AC, Georgiou K, Finnegan C, Hobbie SE, Hatten JA, et al. Low-intensity frequent fires in coniferous forests transform soil organic matter in ways that may offset ecosystem carbon losses. Global change biology. 2021 Aug;27(16):3810–23.
Pellegrini, Adam F. A., et al. “Low-intensity frequent fires in coniferous forests transform soil organic matter in ways that may offset ecosystem carbon losses.Global Change Biology, vol. 27, no. 16, Aug. 2021, pp. 3810–23. Epmc, doi:10.1111/gcb.15648.
Pellegrini AFA, Caprio AC, Georgiou K, Finnegan C, Hobbie SE, Hatten JA, Jackson RB. Low-intensity frequent fires in coniferous forests transform soil organic matter in ways that may offset ecosystem carbon losses. Global change biology. 2021 Aug;27(16):3810–3823.
Journal cover image

Published In

Global change biology

DOI

EISSN

1365-2486

ISSN

1354-1013

Publication Date

August 2021

Volume

27

Issue

16

Start / End Page

3810 / 3823

Related Subject Headings

  • Tracheophyta
  • Soil
  • Forests
  • Fires
  • Ecosystem
  • Ecology
  • Carbon
  • 41 Environmental sciences
  • 37 Earth sciences
  • 31 Biological sciences