
Characterization of single barrier microrefrigerators at cryogenic temperatures
The experimental characterization of single barrier heterostructure thermionic cooling devices at cryogenic temperatures is reported. The device studied was a cylindrical InGaAs microrefrigerator, in which the active layer was a 1 μm thick In 0.527Al 0.218Ga 0.255As heterostructure barrier with n-type doping concentration of 6.68 × 10 16 cm -3 and an In 0.53Ga 0.47As emitter/collector of 5 × 10 18 cm -3 n-doping. A full field thermoreflectance imaging technique was used to measure the distribution of temperature change on the device's top surface when different current excitation values were applied. By reversing the current direction, we studied the device's behavior in both cooling and heating regimes. At an ambient temperature of 100 K, a maximum cooling of 0.6 K was measured. This value was approximately one-third of the measured maximum cooling value at room temperature (1.8 K). The paper describes the device's structure and the first reported thermal imaging at cryogenic temperatures using the thermoreflectance technique. © 2009 The Author(s).
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Applied Physics
- 1099 Other Technology
- 0906 Electrical and Electronic Engineering
- 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
Citation

Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Applied Physics
- 1099 Other Technology
- 0906 Electrical and Electronic Engineering
- 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics