Skip to main content

Tame Cuspidal Representations in Non-Defining Characteristics

Publication ,  Journal Article
Fintzen, J
Published in: Michigan Mathematical Journal
August 1, 2022

Let F be a nonarchimedean local field of residual characteristic p = 2. Let G be a (connected) reductive group that splits over a tamely ramified field extension of F. We show that a construction analogous to Yu's construction of complex supercuspidal representations yields smooth, irreducible, cuspidal representations over an arbitrary algebraically closed field R of characteristic different from p. Moreover, we prove that this construction provides all smooth, irreducible, cuspidal R-representations if p does not divide the order of the Weyl group of G.

Duke Scholars

Published In

Michigan Mathematical Journal

DOI

EISSN

1945-2365

ISSN

0026-2285

Publication Date

August 1, 2022

Volume

72

Start / End Page

331 / 342

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Fintzen, J. (2022). Tame Cuspidal Representations in Non-Defining Characteristics. Michigan Mathematical Journal, 72, 331–342. https://doi.org/10.1307/mmj/20217217
Fintzen, J. “Tame Cuspidal Representations in Non-Defining Characteristics.” Michigan Mathematical Journal 72 (August 1, 2022): 331–42. https://doi.org/10.1307/mmj/20217217.
Fintzen J. Tame Cuspidal Representations in Non-Defining Characteristics. Michigan Mathematical Journal. 2022 Aug 1;72:331–42.
Fintzen, J. “Tame Cuspidal Representations in Non-Defining Characteristics.” Michigan Mathematical Journal, vol. 72, Aug. 2022, pp. 331–42. Scopus, doi:10.1307/mmj/20217217.
Fintzen J. Tame Cuspidal Representations in Non-Defining Characteristics. Michigan Mathematical Journal. 2022 Aug 1;72:331–342.

Published In

Michigan Mathematical Journal

DOI

EISSN

1945-2365

ISSN

0026-2285

Publication Date

August 1, 2022

Volume

72

Start / End Page

331 / 342

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 0101 Pure Mathematics