Local hyperthermia treatment of tumors induces CD8+ T cell-mediated resistance against distal and secondary tumors
Combinatorial use of iron oxide nanoparticles (IONPs) and an alternating magnetic fi eld (AMF) can induce local hyperthermia in tumors in a controlled and uniform manner. Heating B16 primary tumors at 43°C for 30 min activated dendritic cells (DCs) and subsequently CD8+ T cells in the draining lymph node (dLN) and conferred resistance against rechallenge with B16 (but not unrelated Lewis Lung carcinoma) given seven days post hyperthermia on both the primary tumor side and the contralateral side in a CD8+ T cell-dependent manner. Mice with heated primary tumors also resisted rechallenge given 30 days post hyperthermia. Mice with larger heated primary tumors had greater resistance to secondary tumors. No rechallenge resistance occurred when tumors were heated at 45°C. Our results demonstrate the promising potential of local hyperthermia treatment applied to identify tumors in inducing anti-tumor immune responses that reduce the risk of recurrence and metastasis.