Expression of endocrine gland-derived vascular endothelial growth factor in ovarian carcinoma.
The first tissue-specific angiogenic molecule, endocrine gland-derived vascular endothelial growth factor (EG-VEGF), was identified recently in human ovary, raising hopes of developing tumor type-specific angiogenesis inhibitors. In the present study, we analyzed the expression of EG-VEGF mRNA in normal human tissues and ovarian neoplasms by quantitative real-time reverse transcription-PCR. EG-VEGF mRNA was expressed in all ovarian neoplasms examined. No significant difference was identified among benign, low malignant potential neoplasms or stage I ovarian cancer, all of which exhibited 2-fold lower mRNA levels compared with normal premenopausal ovaries. EG-VEGF mRNA levels further decreased in late stage compared with early stage carcinomas (P < 0.05) and were consistently lower in laser capture microdissected tumor islets compared with surrounding stroma. EG-VEGF was undetectable by reverse transcription-PCR in 17 established epithelial ovarian cancer cell lines or in cultured human ovarian surface epithelial cells, whereas it was detected in peripheral blood as well as tumor-infiltrating T lymphocytes. Finally, in contrast to VEGF, EG-VEGF mRNA levels did not correlate with clinical outcome in advanced ovarian carcinoma. These results suggest that EG-VEGF is most likely derived from nonepithelial components of ovarian carcinomas and may play a marginal role in promoting angiogenesis in advanced ovarian carcinoma. We postulate that EG-VEGF-targeted antiangiogenic therapy may prove useful in early stage but not in advanced stage ovarian carcinoma.
Duke Scholars
Published In
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Vascular Endothelial Growth Factors
- Vascular Endothelial Growth Factor, Endocrine-Gland-Derived
- Vascular Endothelial Growth Factor A
- Tumor Cells, Cultured
- Treatment Outcome
- Tissue Distribution
- Time Factors
- Reverse Transcriptase Polymerase Chain Reaction
- RNA, Messenger
- Ovarian Neoplasms
Citation
Published In
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Vascular Endothelial Growth Factors
- Vascular Endothelial Growth Factor, Endocrine-Gland-Derived
- Vascular Endothelial Growth Factor A
- Tumor Cells, Cultured
- Treatment Outcome
- Tissue Distribution
- Time Factors
- Reverse Transcriptase Polymerase Chain Reaction
- RNA, Messenger
- Ovarian Neoplasms