Skip to main content
construction release_alert
Scholars@Duke will be undergoing maintenance April 11-15. Some features may be unavailable during this time.
cancel

Engineering injectable synthetic ECM-based hydrogel as vehicles for retinal progenitor cells transplantation

Publication ,  Conference
Kundu, J; Zhao, P; Desai, A; Rezaeeyazdi, M; Bencherif, S; Young, MJ; Monaghan, J; Kim, SY; Linhardt, R; Carrier, RL
Published in: Transactions of the Annual Meeting of the Society for Biomaterials and the Annual International Biomaterials Symposium
January 1, 2019

Statement of Purpose: Photoreceptor loss and damage in retinal degenerative diseases, like Age-related macular degeneration (AMD) results in visual impairment. Retinal cells implanted into the subretinal space have been shown to integrate within host retina, improving visual function in models of retinal degeneration1. One barrier to the clinical success of extremely promising cell delivery treatments is loss, through efflux and death, of the majority (>99%) of implanted cells2. Recent studies have demonstrated that delivery of retinal progenitor cells (RPCs) using polymer scaffolds results in improved cell survival with associated increases in RPC integration3-4. However, current polymer scaffolds still result in extremely limited overall integration (<2%). Decellularized extracellular matrix (ECM) has been utilized as a scaffold material with considerable success5. It is known that ECM provides cells with specific physical and chemical cues that drive cell behavior. Still, the major shortcomings of native ECM include compositional variation from lot to lot and undefined composition. Unlike naturally derived ECM-based biomaterials, synthetic ECMs are more favorable in terms of mechanical properties, tenability and reproducibility, since their physicochemical properties can be easily controlled. We investigated an inert hydrogel system (alginate) with retinal ECM-based components, specifically the glycosaminoglycans (GAGs): hyaluronic acid (HA) and chondroitin sulphate (CS) as a cell delivery platform to treat retinal degenerative diseases.

Duke Scholars

Published In

Transactions of the Annual Meeting of the Society for Biomaterials and the Annual International Biomaterials Symposium

ISSN

1526-7547

ISBN

9781510883901

Publication Date

January 1, 2019

Volume

40

Start / End Page

846
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Kundu, J., Zhao, P., Desai, A., Rezaeeyazdi, M., Bencherif, S., Young, M. J., … Carrier, R. L. (2019). Engineering injectable synthetic ECM-based hydrogel as vehicles for retinal progenitor cells transplantation. In Transactions of the Annual Meeting of the Society for Biomaterials and the Annual International Biomaterials Symposium (Vol. 40, p. 846).
Kundu, J., P. Zhao, A. Desai, M. Rezaeeyazdi, S. Bencherif, M. J. Young, J. Monaghan, S. Y. Kim, R. Linhardt, and R. L. Carrier. “Engineering injectable synthetic ECM-based hydrogel as vehicles for retinal progenitor cells transplantation.” In Transactions of the Annual Meeting of the Society for Biomaterials and the Annual International Biomaterials Symposium, 40:846, 2019.
Kundu J, Zhao P, Desai A, Rezaeeyazdi M, Bencherif S, Young MJ, et al. Engineering injectable synthetic ECM-based hydrogel as vehicles for retinal progenitor cells transplantation. In: Transactions of the Annual Meeting of the Society for Biomaterials and the Annual International Biomaterials Symposium. 2019. p. 846.
Kundu, J., et al. “Engineering injectable synthetic ECM-based hydrogel as vehicles for retinal progenitor cells transplantation.” Transactions of the Annual Meeting of the Society for Biomaterials and the Annual International Biomaterials Symposium, vol. 40, 2019, p. 846.
Kundu J, Zhao P, Desai A, Rezaeeyazdi M, Bencherif S, Young MJ, Monaghan J, Kim SY, Linhardt R, Carrier RL. Engineering injectable synthetic ECM-based hydrogel as vehicles for retinal progenitor cells transplantation. Transactions of the Annual Meeting of the Society for Biomaterials and the Annual International Biomaterials Symposium. 2019. p. 846.

Published In

Transactions of the Annual Meeting of the Society for Biomaterials and the Annual International Biomaterials Symposium

ISSN

1526-7547

ISBN

9781510883901

Publication Date

January 1, 2019

Volume

40

Start / End Page

846