Fibers and fiber end sealing caps for Er:YAG laser ablation
considerable interest, in the recent years, has been allocated in the mid-infrared Er:YAG laser surgery and microsurgery. This interest has been increased after the development of optical fibers and waveguides, for safe and efficient transmission of the ∼3.0 μm wavelength beams. On the other hand, a laser delivery system based on common silica glass fibers and caps are not applicable for delivery of the Er:YAG laser light, due to high absorption losses at the mid-infrared wavelengths. Thus, fluoride glass fibers and sealing quartz caps is a promising combination for laser delivery due to their low transmission loss. In this study, we investigated the properties of three sealing quartz caps, suitable for fluoride glass optical fibers, with various distal end geometries, in order to evaluate the attenuation and the spatial and temporal energy distribution of the transmitted laser radiation. Moreover, we evaluated the experimental beam divergence of the sealing caps. As a transmission medium, three fluoride glass optical fibers were used. As a laser source we used a Q-switched Er:YAG laser with a pulse duration of 190 ns and a repetition rate of 1 Hz. The mean value of the energy loss for dome geometry was found (0.73 ± 0.03), for planoconvex geometry was found (0.76 ± 0.03) and for ball geometry was found (0.73 ± 0.05). The beam divergence was found (62.4 ± 0.1) mrad, (156.2 ± 0.3) mrad and (37.5 ± 0.5) mrad for dome, ball and plano-convex geometry, respectively. © 2011 SPIE.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Related Subject Headings
- 5102 Atomic, molecular and optical physics
- 4009 Electronics, sensors and digital hardware
- 4006 Communications engineering
Citation
Published In
DOI
ISSN
Publication Date
Volume
Related Subject Headings
- 5102 Atomic, molecular and optical physics
- 4009 Electronics, sensors and digital hardware
- 4006 Communications engineering