A loss-based prior for Gaussian graphical models
Gaussian graphical models play an important role in various areas such as genetics, finance, statistical physics and others. They are a powerful modelling tool, which allows one to describe the relationships among the variables of interest. From the Bayesian perspective, there are two sources of randomness: one is related to the multivariate distribution and the quantities that may parametrise the model, and the other has to do with the underlying graph, G, equivalent to describing the conditional independence structure of the model under consideration. In this paper, we propose a prior on G based on two loss components. One considers the loss in information one would incur in selecting the wrong graph, while the second penalises for large number of edges, favouring sparsity. We illustrate the prior on simulated data and on real datasets, and compare the results with other priors on G used in the literature. Moreover, we present a default choice of the prior as well as discuss how it can be calibrated so as to reflect available prior information.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 1403 Econometrics
- 0104 Statistics
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 1403 Econometrics
- 0104 Statistics