A Polynomial Sieve and Sums of Deligne Type
Publication
, Journal Article
Bonolis, D
Published in: International Mathematics Research Notices
January 1, 2021
Let $f\in \mathbb{Z}[T]$ be any polynomial of degree $d>1$ and $F\in \mathbb{Z}[X-{0},..,X-{n}]$ an irreducible homogeneous polynomial of degree $e>1$ such that the projective hypersurface $V(F)$ is smooth. In this paper we present a new bound for $N(f,F,B):=|\{\textbf{x}\in \mathbb{Z}^{n+1}:\max-{0\leq i\leq n}|x-{i}|\leq B,\exists t\in \mathbb{Z}\textrm{ such that}\ f(t)=F(\textbf{x})\}|.$ To do this, we introduce a generalization of the power sieve [14, 28] and we extend two results by Deligne and Katz on estimates for additive and multiplicative characters in many variables.
Published In
International Mathematics Research Notices
DOI
EISSN
1687-0247
ISSN
1073-7928
Publication Date
January 1, 2021
Volume
2021
Issue
2
Start / End Page
1096 / 1137
Related Subject Headings
- General Mathematics
- 4902 Mathematical physics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Bonolis, D. (2021). A Polynomial Sieve and Sums of Deligne Type. International Mathematics Research Notices, 2021(2), 1096–1137. https://doi.org/10.1093/imrn/rnz245
Bonolis, D. “A Polynomial Sieve and Sums of Deligne Type.” International Mathematics Research Notices 2021, no. 2 (January 1, 2021): 1096–1137. https://doi.org/10.1093/imrn/rnz245.
Bonolis D. A Polynomial Sieve and Sums of Deligne Type. International Mathematics Research Notices. 2021 Jan 1;2021(2):1096–137.
Bonolis, D. “A Polynomial Sieve and Sums of Deligne Type.” International Mathematics Research Notices, vol. 2021, no. 2, Jan. 2021, pp. 1096–137. Scopus, doi:10.1093/imrn/rnz245.
Bonolis D. A Polynomial Sieve and Sums of Deligne Type. International Mathematics Research Notices. 2021 Jan 1;2021(2):1096–1137.
Published In
International Mathematics Research Notices
DOI
EISSN
1687-0247
ISSN
1073-7928
Publication Date
January 1, 2021
Volume
2021
Issue
2
Start / End Page
1096 / 1137
Related Subject Headings
- General Mathematics
- 4902 Mathematical physics
- 0101 Pure Mathematics