On the size of the maximum of incomplete Kloosterman sums
Publication
, Journal Article
Bonolis, D
Published in: Mathematical Proceedings of the Cambridge Philosophical Society
May 1, 2022
Let t: Fp→C be a complex valued function on Fp. A classical problem in analytic number theory is bounding the maximum of the absolute value of the incomplete sums (1/√p)Σ0≤n
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
Mathematical Proceedings of the Cambridge Philosophical Society
DOI
EISSN
1469-8064
ISSN
0305-0041
Publication Date
May 1, 2022
Volume
172
Issue
3
Start / End Page
563 / 590
Related Subject Headings
- 4904 Pure mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Bonolis, D. (2022). On the size of the maximum of incomplete Kloosterman sums. Mathematical Proceedings of the Cambridge Philosophical Society, 172(3), 563–590. https://doi.org/10.1017/S030500412100030X
Bonolis, D. “On the size of the maximum of incomplete Kloosterman sums.” Mathematical Proceedings of the Cambridge Philosophical Society 172, no. 3 (May 1, 2022): 563–90. https://doi.org/10.1017/S030500412100030X.
Bonolis D. On the size of the maximum of incomplete Kloosterman sums. Mathematical Proceedings of the Cambridge Philosophical Society. 2022 May 1;172(3):563–90.
Bonolis, D. “On the size of the maximum of incomplete Kloosterman sums.” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 172, no. 3, May 2022, pp. 563–90. Scopus, doi:10.1017/S030500412100030X.
Bonolis D. On the size of the maximum of incomplete Kloosterman sums. Mathematical Proceedings of the Cambridge Philosophical Society. 2022 May 1;172(3):563–590.
Published In
Mathematical Proceedings of the Cambridge Philosophical Society
DOI
EISSN
1469-8064
ISSN
0305-0041
Publication Date
May 1, 2022
Volume
172
Issue
3
Start / End Page
563 / 590
Related Subject Headings
- 4904 Pure mathematics
- 0101 Pure Mathematics