Skip to main content
Journal cover image

Tame Tori in p-Adic Groups and Good Semisimple Elements

Publication ,  Journal Article
Fintzen, J
Published in: International Mathematics Research Notices
October 1, 2021

Let G be a reductive group over a non-archimedean local field k. We provide necessary conditions and sufficient conditions for all tori of G to split over a tamely ramified extension of k. We then show the existence of good semisimple elements in every Moy-Prasad filtration coset of the group G(k) and its Lie algebra, assuming the above sufficient conditions are met.

Duke Scholars

Published In

International Mathematics Research Notices

DOI

EISSN

1687-0247

ISSN

1073-7928

Publication Date

October 1, 2021

Volume

2021

Issue

19

Start / End Page

14882 / 14904

Related Subject Headings

  • General Mathematics
  • 4902 Mathematical physics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Fintzen, J. (2021). Tame Tori in p-Adic Groups and Good Semisimple Elements. International Mathematics Research Notices, 2021(19), 14882–14904. https://doi.org/10.1093/imrn/rnz234
Fintzen, J. “Tame Tori in p-Adic Groups and Good Semisimple Elements.” International Mathematics Research Notices 2021, no. 19 (October 1, 2021): 14882–904. https://doi.org/10.1093/imrn/rnz234.
Fintzen J. Tame Tori in p-Adic Groups and Good Semisimple Elements. International Mathematics Research Notices. 2021 Oct 1;2021(19):14882–904.
Fintzen, J. “Tame Tori in p-Adic Groups and Good Semisimple Elements.” International Mathematics Research Notices, vol. 2021, no. 19, Oct. 2021, pp. 14882–904. Scopus, doi:10.1093/imrn/rnz234.
Fintzen J. Tame Tori in p-Adic Groups and Good Semisimple Elements. International Mathematics Research Notices. 2021 Oct 1;2021(19):14882–14904.
Journal cover image

Published In

International Mathematics Research Notices

DOI

EISSN

1687-0247

ISSN

1073-7928

Publication Date

October 1, 2021

Volume

2021

Issue

19

Start / End Page

14882 / 14904

Related Subject Headings

  • General Mathematics
  • 4902 Mathematical physics
  • 0101 Pure Mathematics