Skip to main content
Journal cover image

On Kostant sections and topological nilpotence

Publication ,  Journal Article
Adler, JD; Fintzen, J; Varma, S
Published in: Journal of the London Mathematical Society
April 1, 2018

Let G denote a connected, quasi-split reductive group over a field F that is complete with respect to a discrete valuation and that has a perfect residue field. Under mild hypotheses, we produce a subset of the Lie algebra g(F) that picks out a G(F) -conjugacy class in every stable, regular, topologically nilpotent conjugacy class in g(F). This generalizes an earlier result obtained by DeBacker and one of the authors under stronger hypotheses. We then show that if F is p-adic, then the characteristic function of this set behaves well with respect to endoscopic transfer.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Journal of the London Mathematical Society

DOI

EISSN

1469-7750

ISSN

0024-6107

Publication Date

April 1, 2018

Volume

97

Issue

2

Start / End Page

325 / 351

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Adler, J. D., Fintzen, J., & Varma, S. (2018). On Kostant sections and topological nilpotence. Journal of the London Mathematical Society, 97(2), 325–351. https://doi.org/10.1112/jlms.12106
Adler, J. D., J. Fintzen, and S. Varma. “On Kostant sections and topological nilpotence.” Journal of the London Mathematical Society 97, no. 2 (April 1, 2018): 325–51. https://doi.org/10.1112/jlms.12106.
Adler JD, Fintzen J, Varma S. On Kostant sections and topological nilpotence. Journal of the London Mathematical Society. 2018 Apr 1;97(2):325–51.
Adler, J. D., et al. “On Kostant sections and topological nilpotence.” Journal of the London Mathematical Society, vol. 97, no. 2, Apr. 2018, pp. 325–51. Scopus, doi:10.1112/jlms.12106.
Adler JD, Fintzen J, Varma S. On Kostant sections and topological nilpotence. Journal of the London Mathematical Society. 2018 Apr 1;97(2):325–351.
Journal cover image

Published In

Journal of the London Mathematical Society

DOI

EISSN

1469-7750

ISSN

0024-6107

Publication Date

April 1, 2018

Volume

97

Issue

2

Start / End Page

325 / 351

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 0101 Pure Mathematics