Skip to main content
Journal cover image

Two antagonistic gene regulatory networks drive Arabidopsis root hair growth at low temperature linked to a low-nutrient environment.

Publication ,  Journal Article
Urzúa Lehuedé, T; Berdion Gabarain, V; Ibeas, MA; Salinas-Grenet, H; Achá-Escobar, R; Moyano, TC; Ferrero, L; Núñez-Lillo, G; Pérez-Díaz, J ...
Published in: The New phytologist
March 2025

Root hair (RH) cells can elongate to several hundred times their initial size, and are an ideal model system for investigating cell size control. Their development is influenced by both endogenous and external signals, which are combined to form an integrative response. Surprisingly, a low-temperature condition of 10°C causes increased RH growth in Arabidopsis and in several monocots, even when the development of the rest of the plant is halted. Previously, we demonstrated a strong correlation between RH growth response and a significant decrease in nutrient availability in the growth medium under low-temperature conditions. However, the molecular basis responsible for receiving and transmitting signals related to the availability of nutrients in the soil, and their relation to plant development, remain largely unknown. We have discovered two antagonic gene regulatory networks (GRNs) controlling RH early transcriptome responses to low temperature. One GNR enhances RH growth and it is commanded by the transcription factors (TFs) ROOT HAIR DEFECTIVE 6 (RHD6), HAIR DEFECTIVE 6-LIKE 2 and 4 (RSL2-RSL4) and a member of the homeodomain leucine zipper (HD-Zip I) group I 16 (AtHB16). On the other hand, a second GRN was identified as a negative regulator of RH growth at low temperature and it is composed by the trihelix TF GT2-LIKE1 (GTL1) and the associated DF1, a previously unidentified MYB-like TF (AT2G01060) and several members of HD-Zip I group (AtHB3, AtHB13, AtHB20, AtHB23). Functional analysis of both GRNs highlights a complex regulation of RH growth response to low temperature, and more importantly, these discoveries enhance our comprehension of how plants synchronize RH growth in response to variations in temperature at the cellular level.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

The New phytologist

DOI

EISSN

1469-8137

ISSN

1469-8137

Publication Date

March 2025

Volume

245

Issue

6

Start / End Page

2645 / 2664

Related Subject Headings

  • Transcription Factors
  • Plant Roots
  • Plant Biology & Botany
  • Nutrients
  • Genes, Plant
  • Gene Regulatory Networks
  • Gene Expression Regulation, Plant
  • Cold Temperature
  • Basic Helix-Loop-Helix Transcription Factors
  • Arabidopsis Proteins
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Urzúa Lehuedé, T., Berdion Gabarain, V., Ibeas, M. A., Salinas-Grenet, H., Achá-Escobar, R., Moyano, T. C., … Estevez, J. M. (2025). Two antagonistic gene regulatory networks drive Arabidopsis root hair growth at low temperature linked to a low-nutrient environment. The New Phytologist, 245(6), 2645–2664. https://doi.org/10.1111/nph.20406
Urzúa Lehuedé, Tomás, Victoria Berdion Gabarain, Miguel Angel Ibeas, Hernán Salinas-Grenet, Romina Achá-Escobar, Tomás C. Moyano, Lucia Ferrero, et al. “Two antagonistic gene regulatory networks drive Arabidopsis root hair growth at low temperature linked to a low-nutrient environment.The New Phytologist 245, no. 6 (March 2025): 2645–64. https://doi.org/10.1111/nph.20406.
Urzúa Lehuedé T, Berdion Gabarain V, Ibeas MA, Salinas-Grenet H, Achá-Escobar R, Moyano TC, et al. Two antagonistic gene regulatory networks drive Arabidopsis root hair growth at low temperature linked to a low-nutrient environment. The New phytologist. 2025 Mar;245(6):2645–64.
Urzúa Lehuedé, Tomás, et al. “Two antagonistic gene regulatory networks drive Arabidopsis root hair growth at low temperature linked to a low-nutrient environment.The New Phytologist, vol. 245, no. 6, Mar. 2025, pp. 2645–64. Epmc, doi:10.1111/nph.20406.
Urzúa Lehuedé T, Berdion Gabarain V, Ibeas MA, Salinas-Grenet H, Achá-Escobar R, Moyano TC, Ferrero L, Núñez-Lillo G, Pérez-Díaz J, Perotti MF, Miguel VN, Spies FP, Rosas MA, Kawamura A, Rodríguez-García DR, Kim A-R, Nolan T, Moreno AA, Sugimoto K, Perrimon N, Sanguinet KA, Meneses C, Chan RL, Ariel F, Alvarez JM, Estevez JM. Two antagonistic gene regulatory networks drive Arabidopsis root hair growth at low temperature linked to a low-nutrient environment. The New phytologist. 2025 Mar;245(6):2645–2664.
Journal cover image

Published In

The New phytologist

DOI

EISSN

1469-8137

ISSN

1469-8137

Publication Date

March 2025

Volume

245

Issue

6

Start / End Page

2645 / 2664

Related Subject Headings

  • Transcription Factors
  • Plant Roots
  • Plant Biology & Botany
  • Nutrients
  • Genes, Plant
  • Gene Regulatory Networks
  • Gene Expression Regulation, Plant
  • Cold Temperature
  • Basic Helix-Loop-Helix Transcription Factors
  • Arabidopsis Proteins