Skip to main content

Micropatterning of poly(ethylene glycol) diacrylate hydrogels with biomolecules to regulate and guide endothelial morphogenesis.

Publication ,  Journal Article
Moon, JJ; Hahn, MS; Kim, I; Nsiah, BA; West, JL
Published in: Tissue engineering. Part A
March 2009

Angiogenesis, which is morphogenesis undertaken by endothelial cells (ECs) during new blood vessel formation, has been traditionally studied on natural extracellular matrix proteins. In this work, we aimed to regulate and guide angiogenesis on synthetic, bioactive poly(ethylene glycol)-diacrylate (PEGDA) hydrogels. PEGDA hydrogel is intrinsically cell nonadhesive and highly resistant to protein adsorption, allowing a high degree of control over presentation of ligands for cell adhesion and signaling. Since these materials are photopolymerizable, a variety of photolithographic technologies may be applied to spatially control presentation of bioactive ligands. To manipulate EC adhesion, migration, and tubulogenesis, the surface of PEGDA hydrogels was micropatterned with a cell adhesive ligand, Arg-Gly-Asp-Ser (RGDS), in desired concentrations and geometries. ECs cultured on these RGDS patterns reorganized their cell bodies into cord-like structures on 50-microm-wide stripes, but not on wider stripes, suggesting that EC morphogenesis can be regulated by geometrical cues. The cords formed by ECs were reminiscent of capillaries with cells participating in the self-assembly and reorganization into multicellular structures. Further, endothelial cord formation was stimulated on intermediate concentration of RGDS at 20 microg/cm(2), whereas it was inhibited at higher concentrations. This work has shown that angiogenic responses can be tightly regulated and guided by micropatterning of bioactive ligands and also demonstrated great potentials of micropatterned PEGDA hydrogels for various applications in tissue engineering, where vascularization prior to implantation is critical.

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Tissue engineering. Part A

DOI

EISSN

1937-335X

ISSN

1937-3341

Publication Date

March 2009

Volume

15

Issue

3

Start / End Page

579 / 585

Related Subject Headings

  • Surface Properties
  • Polyethylene Glycols
  • Oligopeptides
  • Neovascularization, Physiologic
  • Morphogenesis
  • Hydrogels
  • Humans
  • Extracellular Matrix Proteins
  • Endothelium
  • Endothelial Cells
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Moon, J. J., Hahn, M. S., Kim, I., Nsiah, B. A., & West, J. L. (2009). Micropatterning of poly(ethylene glycol) diacrylate hydrogels with biomolecules to regulate and guide endothelial morphogenesis. Tissue Engineering. Part A, 15(3), 579–585. https://doi.org/10.1089/ten.tea.2008.0196
Moon, James J., Mariah S. Hahn, Iris Kim, Barbara A. Nsiah, and Jennifer L. West. “Micropatterning of poly(ethylene glycol) diacrylate hydrogels with biomolecules to regulate and guide endothelial morphogenesis.Tissue Engineering. Part A 15, no. 3 (March 2009): 579–85. https://doi.org/10.1089/ten.tea.2008.0196.
Moon JJ, Hahn MS, Kim I, Nsiah BA, West JL. Micropatterning of poly(ethylene glycol) diacrylate hydrogels with biomolecules to regulate and guide endothelial morphogenesis. Tissue engineering Part A. 2009 Mar;15(3):579–85.
Moon, James J., et al. “Micropatterning of poly(ethylene glycol) diacrylate hydrogels with biomolecules to regulate and guide endothelial morphogenesis.Tissue Engineering. Part A, vol. 15, no. 3, Mar. 2009, pp. 579–85. Epmc, doi:10.1089/ten.tea.2008.0196.
Moon JJ, Hahn MS, Kim I, Nsiah BA, West JL. Micropatterning of poly(ethylene glycol) diacrylate hydrogels with biomolecules to regulate and guide endothelial morphogenesis. Tissue engineering Part A. 2009 Mar;15(3):579–585.

Published In

Tissue engineering. Part A

DOI

EISSN

1937-335X

ISSN

1937-3341

Publication Date

March 2009

Volume

15

Issue

3

Start / End Page

579 / 585

Related Subject Headings

  • Surface Properties
  • Polyethylene Glycols
  • Oligopeptides
  • Neovascularization, Physiologic
  • Morphogenesis
  • Hydrogels
  • Humans
  • Extracellular Matrix Proteins
  • Endothelium
  • Endothelial Cells