Beth Ann Sullivan
Professor of Molecular Genetics and Microbiology
Research in the Sullivan Lab is focused on chromosome organization, with a specific emphasis on the genomics and epigenetics of the chromosomal locus called the centromere and the formation and fate of chromosome abnormalities that are associated with birth defects, reproductive abnormalities, and cancer. The centromere is a specialized chromosomal site involved in chromosome architecture and movement, kinetochore function, heterochromatin assembly, and sister chromatid cohesion.
Our experiments have uncovered a unique type of chromatin (CEN chromatin) formed exclusively at the centromere by replacement of core histone H3 by the centromeric histone variant CENP-A. Our studies explore the composition of CEN chromatin and its relationship to the underlying highly repetitive alpha satellite DNA at the centromere. We recently discovered that genomic variation within alpha satellite DNA affects centromere location and chromosome stability. Variation within the repetitive portion of the human genome has not been well studied, primarily because sequences like alpha satellite DNA are part of the 10% of the human genome that has been excluded from the contiguous genome assembly. We are members of the T2T (Telomere-to-Telomere) Consortium whose goal is to use ultra long read sequencing and optical mapping to completely assemble each human chromosome, including through the multiple megabases of alpha satellite DNA at each centromere. Through this project, we are identifying normal and pathogenic variation within the repetitive portion of individual human genomes, and have discovered that alpha satellite variation is more prevalent on specific human chromosomes in ovarian and colorectal cancers.
We routinely create human artificial chromosomes (HACs), using them as tools to define the components of a viable, transmissible chromosome and to study how alpha satellite variation affects centromeric transcription, recruitment of centromere proteins, kinetochore architecture, and ultimately, chromosome stability. We also use CRISPR-based genome editing methods to remove native centromeres to define regions in the human genome that harbor latent centromere function.
Finally, the lab studies human chromosomal abnormalities with two centromeres, called dicentric chromosomes. Originally described by Barbara McClintock in the 1930s, dicentrics are considered inherently unstable chromosomes that trigger genome instability in infertility and cancer. However, dicentric chromosomes in humans are very stable and are often transmitted through the germ line. Using several approaches to experimentally reproduce dicentric chromosomes in human cells, we are investigating dicentric structure, formation, and and long-term fate.
Our experiments have uncovered a unique type of chromatin (CEN chromatin) formed exclusively at the centromere by replacement of core histone H3 by the centromeric histone variant CENP-A. Our studies explore the composition of CEN chromatin and its relationship to the underlying highly repetitive alpha satellite DNA at the centromere. We recently discovered that genomic variation within alpha satellite DNA affects centromere location and chromosome stability. Variation within the repetitive portion of the human genome has not been well studied, primarily because sequences like alpha satellite DNA are part of the 10% of the human genome that has been excluded from the contiguous genome assembly. We are members of the T2T (Telomere-to-Telomere) Consortium whose goal is to use ultra long read sequencing and optical mapping to completely assemble each human chromosome, including through the multiple megabases of alpha satellite DNA at each centromere. Through this project, we are identifying normal and pathogenic variation within the repetitive portion of individual human genomes, and have discovered that alpha satellite variation is more prevalent on specific human chromosomes in ovarian and colorectal cancers.
We routinely create human artificial chromosomes (HACs), using them as tools to define the components of a viable, transmissible chromosome and to study how alpha satellite variation affects centromeric transcription, recruitment of centromere proteins, kinetochore architecture, and ultimately, chromosome stability. We also use CRISPR-based genome editing methods to remove native centromeres to define regions in the human genome that harbor latent centromere function.
Finally, the lab studies human chromosomal abnormalities with two centromeres, called dicentric chromosomes. Originally described by Barbara McClintock in the 1930s, dicentrics are considered inherently unstable chromosomes that trigger genome instability in infertility and cancer. However, dicentric chromosomes in humans are very stable and are often transmitted through the germ line. Using several approaches to experimentally reproduce dicentric chromosomes in human cells, we are investigating dicentric structure, formation, and and long-term fate.
Current Appointments & Affiliations
- Professor of Molecular Genetics and Microbiology, Molecular Genetics and Microbiology, Basic Science Departments 2020
- Associate Dean of Research Training, School of Medicine, Duke University 2019
- Professor of Cell Biology, Cell Biology, Basic Science Departments 2022
- Member of the Duke Cancer Institute, Duke Cancer Institute, Institutes and Centers 2005
- Associate of the Duke Initiative for Science & Society, Duke Science & Society, Initiatives 2018
Contact Information
- 213 Research Drive DUMC 3054, 361 CARL, Durham, NC 27710
- Box 3054 DUMC, 361 CARL, Durham, NC 27710
-
(919) 684-9038
-
Sullivan Lab
- Background
-
Education, Training, & Certifications
- Ph.D., University of Maryland, Baltimore 1995
-
Previous Appointments & Affiliations
- Associate Professor of Molecular Genetics and Microbiology, Molecular Genetics and Microbiology, Basic Science Departments 2013 - 2020
- Assistant Professor of Molecular Genetics and Microbiology, Molecular Genetics and Microbiology, Basic Science Departments 2006 - 2013
- Visiting Assistant Professor of Molecular Genetics and Microbiology, Molecular Genetics and Microbiology, Basic Science Departments 2005 - 2006
-
Leadership & Clinical Positions at Duke
-
Associate Dean for Research Training, School of Medicine 2019-
Director, Genetics and Genomics Cluster, Duke Focus Program 2015-2021
Co-Director, University Program in Genetics and Genomics 2010-2014
-
Associate Dean for Research Training, School of Medicine 2019-
- Recognition
-
In the News
-
MAY 4, 2023 Duke Today -
JUN 24, 2019 Duke Med School Blog -
AUG 30, 2016 -
NOV 24, 2015
-
-
Awards & Honors
- Expertise
-
Subject Headings
- Aneuploidy
- Cell Cycle
- Centromere
- Centromere Protein B
- Chromatids
- Chromatin
- Chromatin Immunoprecipitation
- Chromosomal Instability
- Chromosomal Proteins, Non-Histone
- Chromosome Aberrations
- Chromosome Deletion
- Chromosome Disorders
- Chromosome Segregation
- Chromosomes
- Chromosomes, Human
- DNA
- DNA Damage
- DNA Methylation
- DNA Repair
- DNA Replication
- DNA, Ribosomal
- DNA, Satellite
- DNA-Binding Proteins
- Epigenesis, Genetic
- Epigenomics
- Eukaryota
- Fluorescent Antibody Technique
- Gene Expression Regulation
- Gene Silencing
- Genome
- Heterochromatin
- Histone Code
- Histones
- Immunofluorescence
- Microscopy, Fluorescence
- Mitosis
- Molecular Probe Techniques
- Polymorphism, Genetic
- Telomere
- Transcription
- Translocation, Genetic
- Research
-
Selected Grants
- Duke Preparing Research Scholars in Biomedical Sciences- Post-Baccalaureate Research Education Program awarded by National Institutes of Health 2022 - 2027
- Medical Scientist Training Program awarded by National Institutes of Health 2022 - 2027
- Genomic Analysis of Centromere Assembly and Function awarded by National Institutes of Health 2017 - 2026
- Cell and Molecular Biology Training Program awarded by National Institutes of Health 2021 - 2026
- Genetic and Genomics Training Grant awarded by National Institutes of Health 2020 - 2025
- The role of retroelements in centromere function awarded by University of Connecticut 2022 - 2023
- Centromere Function and Dicentric Chromosome Stability awarded by National Institutes of Health 2019 - 2023
- Preparing Genetic Counselors for Genomic Medicine Research awarded by National Institutes of Health 2017 - 2023
- Ectopic centromere assembly in humans awarded by National Institutes of Health 2019 - 2022
- Medical Scientist Training Program awarded by National Institutes of Health 1997 - 2022
- Genetics Training Grant awarded by National Institutes of Health 1979 - 2020
- Organization and Function of Cellular Structure awarded by National Institutes of Health 1975 - 2020
- Dicentric chromosome stability and formation in humans awarded by National Institutes of Health 2012 - 2017
- Genomic and Epigenetic Mechanisms of Human Centromere Assembly and Chromosome Stability awarded by March of Dimes 2013 - 2016
- Epigenomic Mechanisms of Centromere Function and Chromosome Rearrangements awarded by National Institutes of Health 2010 - 2013
- Mechanisms of Human Chromosome Rearrangement and Stability awarded by March of Dimes 2010 - 2013
- Organization and Regulation of Eukaryotic Centromeres awarded by National Institutes of Health 2005 - 2010
- Epigenetic Determinants of Centromere Function and Stability in Human Dicentric Chromosomes awarded by March of Dimes 2006 - 2009
- Organization and Stability of Centromeric Chromatin awarded by March of Dimes Birth Defects Foundation 2005 - 2006
-
Fellowships, Supported Research, & Other Grants
- Seed Grant: Strategic community building: An alternative to discriminatory practices across disciplines (SCB) awarded by Duke Office of Faculty Advancement 2020
-
External Relationships
- Springer Nature Publishing Company
- Publications & Artistic Works
-
Selected Publications
-
Academic Articles
-
Implications of the first complete human genome assembly. (2022). Genome Res, 32(4), 595–598. https://doi.org/10.1101/gr.276723.122Full Text Link to Item
-
Altemose, N., Logsdon, G. A., Bzikadze, A. V., Sidhwani, P., Langley, S. A., Caldas, G. V., … Miga, K. H. (2022). Complete genomic and epigenetic maps of human centromeres. Science, 376(6588), eabl4178. https://doi.org/10.1126/science.abl4178Full Text Link to Item
-
Nurk, S., Koren, S., Rhie, A., Rautiainen, M., Bzikadze, A. V., Mikheenko, A., … Phillippy, A. M. (2022). The complete sequence of a human genome. Science, 376(6588), 44–53. https://doi.org/10.1126/science.abj6987Full Text Link to Item
-
DeBose-Scarlett, E. M., & Sullivan, B. A. (2021). Genomic and Epigenetic Foundations of Neocentromere Formation. Annu Rev Genet, 55, 331–348. https://doi.org/10.1146/annurev-genet-071719-020924Full Text Link to Item
-
Miga, K. H., & Sullivan, B. A. (2021). Expanding studies of chromosome structure and function in the era of T2T genomics. Hum Mol Genet, 30(R2), R198–R205. https://doi.org/10.1093/hmg/ddab214Full Text Link to Item
-
Sullivan, B. A. (2021). The new year for chromosome research: a change of guard amidst a shifting scientific landscape and global pandemic. Chromosome Res, 29(2), 127–130. https://doi.org/10.1007/s10577-021-09647-4Full Text Open Access Copy Link to Item
-
Hoffmann, S., Izquierdo, H. M., Gamba, R., Chardon, F., Dumont, M., Keizer, V., … Fachinetti, D. (2020). A genetic memory initiates the epigenetic loop necessary to preserve centromere position. Embo J, 39(20), e105505. https://doi.org/10.15252/embj.2020105505Full Text Open Access Copy Link to Item
-
Miga, K. H., Koren, S., Rhie, A., Vollger, M. R., Gershman, A., Bzikadze, A., … Phillippy, A. M. (2020). Telomere-to-telomere assembly of a complete human X chromosome. Nature, 585(7823), 79–84. https://doi.org/10.1038/s41586-020-2547-7Full Text Open Access Copy Link to Item
-
Sullivan, L. L., & Sullivan, B. A. (2020). Genomic and functional variation of human centromeres. Exp Cell Res, 389(2), 111896. https://doi.org/10.1016/j.yexcr.2020.111896Full Text Open Access Copy Link to Item
-
Sullivan, B. A. (2020). A sampling of methods to study chromosome and genome structure and function. Chromosome Res, 28(1), 1–5. https://doi.org/10.1007/s10577-020-09629-yFull Text Link to Item
-
Sullivan, B. A. (2020). De Novo Centromere Formation: One's Company, Two's a Crowd. Dev Cell, 52(3), 257–258. https://doi.org/10.1016/j.devcel.2020.01.021Full Text Link to Item
-
McNulty, S. M., & Sullivan, B. A. (2019). Correction: Going the distance: Neocentromeres make long-range contacts with heterochromatin. J Cell Biol, 218(2), 722. https://doi.org/10.1083/jcb.20181117201102019cFull Text Link to Item
-
McNulty, S. M., & Sullivan, B. A. (2019). Going the distance: Neocentromeres make long-range contacts with heterochromatin. J Cell Biol, 218(1), 5–7. https://doi.org/10.1083/jcb.201811172Full Text Open Access Copy Link to Item
-
McNulty, S. M., & Sullivan, B. A. (2018). Alpha satellite DNA biology: finding function in the recesses of the genome. Chromosome Res, 26(3), 115–138. https://doi.org/10.1007/s10577-018-9582-3Full Text Open Access Copy Link to Item
-
Larsen, P. A., Harris, R. A., Liu, Y., Murali, S. C., Campbell, C. R., Brown, A. D., … Worley, K. C. (2017). Hybrid de novo genome assembly and centromere characterization of the gray mouse lemur (Microcebus murinus). Bmc Biol, 15(1), 110. https://doi.org/10.1186/s12915-017-0439-6Full Text Open Access Copy Link to Item
-
Iwata-Otsubo, A., Dawicki-McKenna, J. M., Akera, T., Falk, S. J., Chmátal, L., Yang, K., … Black, B. E. (2017). Expanded Satellite Repeats Amplify a Discrete CENP-A Nucleosome Assembly Site on Chromosomes that Drive in Female Meiosis. Curr Biol, 27(15), 2365-2373.e8. https://doi.org/10.1016/j.cub.2017.06.069Full Text Link to Item
-
McNulty, S. M., Sullivan, L. L., & Sullivan, B. A. (2017). Human Centromeres Produce Chromosome-Specific and Array-Specific Alpha Satellite Transcripts that Are Complexed with CENP-A and CENP-C. Dev Cell, 42(3), 226-240.e6. https://doi.org/10.1016/j.devcel.2017.07.001Full Text Link to Item
-
Johnson, W. L., Yewdell, W. T., Bell, J. C., McNulty, S. M., Duda, Z., O’Neill, R. J., … Straight, A. F. (2017). RNA-dependent stabilization of SUV39H1 at constitutive heterochromatin. Elife, 6. https://doi.org/10.7554/eLife.25299.001Full Text Open Access Copy
-
Johnson, W. L., Yewdell, W. T., Bell, J. C., McNulty, S. M., Duda, Z., O’Neill, R. J., … Straight, A. F. (2017). RNA-dependent stabilization of SUV39H1 at constitutive heterochromatin. Elife, 6. https://doi.org/10.7554/eLife.25299Full Text Open Access Copy Link to Item
-
Sullivan, L. L., Chew, K., & Sullivan, B. A. (2017). α satellite DNA variation and function of the human centromere. Nucleus, 8(4), 331–339. https://doi.org/10.1080/19491034.2017.1308989Full Text Link to Item
-
McNulty, S. M., & Sullivan, B. A. (2017). Centromere Silencing Mechanisms. Prog Mol Subcell Biol, 56, 233–255. https://doi.org/10.1007/978-3-319-58592-5_10Full Text Link to Item
-
Sullivan, L. L., Maloney, K. A., Towers, A. J., Gregory, S. G., & Sullivan, B. A. (2016). Human centromere repositioning within euchromatin after partial chromosome deletion. Chromosome Res, 24(4), 451–466. https://doi.org/10.1007/s10577-016-9536-6Full Text Link to Item
-
Aldrup-MacDonald, M. E., Kuo, M. E., Sullivan, L. L., Chew, K., & Sullivan, B. A. (2016). Genomic variation within alpha satellite DNA influences centromere location on human chromosomes with metastable epialleles. Genome Res, 26(10), 1301–1311. https://doi.org/10.1101/gr.206706.116Full Text Open Access Copy Link to Item
-
Ross, J. E., Woodlief, K. S., & Sullivan, B. A. (2016). Inheritance of the CENP-A chromatin domain is spatially and temporally constrained at human centromeres. Epigenetics Chromatin, 9, 20. https://doi.org/10.1186/s13072-016-0071-7Full Text Open Access Copy Link to Item
-
Scott, K. C., & Sullivan, B. A. (2014). Neocentromeres: a place for everything and everything in its place. Trends Genet, 30(2), 66–74. https://doi.org/10.1016/j.tig.2013.11.003Full Text Link to Item
-
Aldrup-Macdonald, M. E., & Sullivan, B. A. (2014). The past, present, and future of human centromere genomics. Genes (Basel), 5(1), 33–50. https://doi.org/10.3390/genes5010033Full Text Open Access Copy Link to Item
-
Stimpson, K. M., Sullivan, L. L., Kuo, M. E., & Sullivan, B. A. (2014). Nucleolar organization, ribosomal DNA array stability, and acrocentric chromosome integrity are linked to telomere function. Plos One, 9(3), e92432. https://doi.org/10.1371/journal.pone.0092432Full Text Open Access Copy Link to Item
-
Earnshaw, W. C., Allshire, R. C., Black, B. E., Bloom, K., Brinkley, B. R., Brown, W., … Cleveland, D. W. (2013). Esperanto for histones: CENP-A, not CenH3, is the centromeric histone H3 variant. Chromosome Res, 21(2), 101–106. https://doi.org/10.1007/s10577-013-9347-yFull Text Link to Item
-
Earnshaw, W. C., Allshire, R. C., Black, B. E., Bloom, K., Brinkley, B. R., Brown, W., … Cleveland, D. W. (2013). Esperanto for histones: CENP-A, not CenH3, is the centromeric histone H3 variant. Chromosome Research, 21(2), 101–106. https://doi.org/10.1007/s10577-013-9347-yFull Text
-
Maloney, K. A., Sullivan, L. L., Matheny, J. E., Strome, E. D., Merrett, S. L., Ferris, A., & Sullivan, B. A. (2012). Functional epialleles at an endogenous human centromere. Proc Natl Acad Sci U S A, 109(34), 13704–13709. https://doi.org/10.1073/pnas.1203126109Full Text Open Access Copy Link to Item
-
A Tribute to Simon W.L. Chan, PhD (1974–2012). (2012). Chromosome Research, 20(6), 657–658. https://doi.org/10.1007/s10577-012-9314-zFull Text
-
O’Neill, R. J., & Sullivan, B. A. (2012). Foreword: the centromere and kinetochore in creatures great and small. Chromosome Res, 20(5), 461–463. https://doi.org/10.1007/s10577-012-9303-2Full Text Link to Item
-
Stimpson, K. M., Matheny, J. E., & Sullivan, B. A. (2012). Dicentric chromosomes: unique models to study centromere function and inactivation. Chromosome Res, 20(5), 595–605. https://doi.org/10.1007/s10577-012-9302-3Full Text Link to Item
-
Stimpson, K. M., & Sullivan, B. A. (2012). Centromeres poised en pointe: CDKs put a hold on CENP-A assembly. Dev Cell, 22(1), 1–2. https://doi.org/10.1016/j.devcel.2011.12.013Full Text Link to Item
-
Sullivan, L. L., Boivin, C. D., Mravinac, B., Song, I. Y., & Sullivan, B. A. (2011). Genomic size of CENP-A domain is proportional to total alpha satellite array size at human centromeres and expands in cancer cells. Chromosome Res, 19(4), 457–470. https://doi.org/10.1007/s10577-011-9208-5Full Text Open Access Copy Link to Item
-
Stimpson, K. M., & Sullivan, B. A. (2011). Histone H3K4 methylation keeps centromeres open for business. Embo J, 30(2), 233–234. https://doi.org/10.1038/emboj.2010.339Full Text Link to Item
-
Stimpson, K. M., & Sullivan, B. A. (2010). Epigenomics of centromere assembly and function. Curr Opin Cell Biol, 22(6), 772–780. https://doi.org/10.1016/j.ceb.2010.07.002Full Text Link to Item
-
Stimpson, K. M., Song, I. Y., Jauch, A., Holtgreve-Grez, H., Hayden, K. E., Bridger, J. M., & Sullivan, B. A. (2010). Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes. Plos Genet, 6(8). https://doi.org/10.1371/journal.pgen.1001061Full Text Open Access Copy Link to Item
-
Sullivan, B. A. (2010). Optical mapping of protein-DNA complexes on chromatin fibers. Methods Mol Biol, 659, 99–115. https://doi.org/10.1007/978-1-60761-789-1_7Full Text Link to Item
-
Sullivan, B. A. (2009). The centromere, 45–76. https://doi.org/10.1007/978-0-387-69076-6_3Full Text
-
Balakumaran, B. S., Porrello, A., Hsu, D. S., Glover, W., Foye, A., Leung, J. Y., … Febbo, P. G. (2009). MYC activity mitigates response to rapamycin in prostate cancer through eukaryotic initiation factor 4E-binding protein 1-mediated inhibition of autophagy. Cancer Res, 69(19), 7803–7810. https://doi.org/10.1158/0008-5472.CAN-09-0910Full Text Open Access Copy Link to Item
-
Gopalakrishnan, S., Sullivan, B. A., Trazzi, S., Della Valle, G., & Robertson, K. D. (2009). DNMT3B interacts with constitutive centromere protein CENP-C to modulate DNA methylation and the histone code at centromeric regions. Hum Mol Genet, 18(17), 3178–3193. https://doi.org/10.1093/hmg/ddp256Full Text Link to Item
-
Mravinac, B., Sullivan, L. L., Reeves, J. W., Yan, C. M., Kopf, K. S., Farr, C. J., … Sullivan, B. A. (2009). Histone modifications within the human X centromere region. Plos One, 4(8), e6602. https://doi.org/10.1371/journal.pone.0006602Full Text Open Access Copy Link to Item
-
Kim, J.-H., Ebersole, T., Kouprina, N., Noskov, V. N., Ohzeki, J.-I., Masumoto, H., … Larionov, V. (2009). Human gamma-satellite DNA maintains open chromatin structure and protects a transgene from epigenetic silencing. Genome Res, 19(4), 533–544. https://doi.org/10.1101/gr.086496.108Full Text Link to Item
-
Gao, F., Ponte, J. F., Levy, M., Papageorgis, P., Cook, N. M., Ozturk, S., … Thiagalingam, S. (2009). hBub1 negatively regulates p53 mediated early cell death upon mitotic checkpoint activation. Cancer Biol Ther, 8(7), 548–556.Link to Item
-
Dai, J., Sullivan, B. A., & Higgins, J. M. G. (2006). Regulation of mitotic chromosome cohesion by Haspin and Aurora B. Dev Cell, 11(5), 741–750. https://doi.org/10.1016/j.devcel.2006.09.018Full Text Link to Item
-
Lam, A. L., Boivin, C. D., Bonney, C. F., Katharine Rudd, M., & Sullivan, B. A. (2006). Erratum: Human centromeric chromatin is a dynamic chromosomal domain that can spread over noncentromeric DNA (Proceedings of the National Academy of Sciences of the United States of America (March 14, 2006) 103, 11 (4186-4191): 10.1073/pnas.0507947103). Proceedings of the National Academy of Sciences of the United States of America, 103(16), 6410. https://doi.org/10.1073/pnas.0602078103Full Text
-
Lam, A. L., Boivin, C. D., Bonney, C. F., Rudd, M. K., & Sullivan, B. A. (2006). Human centromeric chromatin is a dynamic chromosomal domain that can spread over noncentromeric DNA. Proc Natl Acad Sci U S A, 103(11), 4186–4191. https://doi.org/10.1073/pnas.0507947103Full Text Link to Item
-
Schueler, M. G., & Sullivan, B. A. (2006). Structural and functional dynamics of human centromeric chromatin. Annu Rev Genomics Hum Genet, 7, 301–313. https://doi.org/10.1146/annurev.genom.7.080505.115613Full Text Link to Item
-
Wilson, K. C., Cattel, D. J., Wan, Z., Rahangdale, S., Ren, F., Kornfeld, H., … Center, D. M. (2005). Regulation of nuclear Prointerleukin-16 and p27(Kip1) in primary human T lymphocytes. Cell Immunol, 237(1), 17–27. https://doi.org/10.1016/j.cellimm.2005.09.003Full Text Link to Item
-
Lam, A. L., Pazin, D. E., & Sullivan, B. A. (2005). Control of gene expression and assembly of chromosomal subdomains by chromatin regulators with antagonistic functions. Chromosoma, 114(4), 242–251. https://doi.org/10.1007/s00412-005-0001-0Full Text Link to Item
-
Sullivan, B. A., & Karpen, G. H. (2004). Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat Struct Mol Biol, 11(11), 1076–1083. https://doi.org/10.1038/nsmb845Full Text Link to Item
-
Sullivan, B. A. (2002). Centromere round-up at the heterochromatin corral. Trends Biotechnol, 20(3), 89–92. https://doi.org/10.1016/s0167-7799(02)01902-9Full Text Link to Item
-
Blower, M. D., Sullivan, B. A., & Karpen, G. H. (2002). Conserved organization of centromeric chromatin in flies and humans. Dev Cell, 2(3), 319–330. https://doi.org/10.1016/s1534-5807(02)00135-1Full Text Link to Item
-
Hoskins, R. A., Smith, C. D., Carlson, J. W., Carvalho, A. B., Halpern, A., Kaminker, J. S., … Karpen, G. H. (2002). Heterochromatic sequences in a Drosophila whole-genome shotgun assembly. Genome Biol, 3(12), RESEARCH0085. https://doi.org/10.1186/gb-2002-3-12-research0085Full Text Link to Item
-
Gong, Y., Slee, R. B., Fukai, N., Rawadi, G., Roman-Roman, S., Reginato, A. M., … Osteoporosis-Pseudoglioma Syndrome Collaborative Group, . (2001). LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell, 107(4), 513–523. https://doi.org/10.1016/s0092-8674(01)00571-2Full Text Link to Item
-
Sullivan, B., & Karpen, G. (2001). Centromere identity in Drosophila is not determined in vivo by replication timing. J Cell Biol, 154(4), 683–690. https://doi.org/10.1083/jcb.200103001Full Text Link to Item
-
Sullivan, B. A., Blower, M. D., & Karpen, G. H. (2001). Determining centromere identity: cyclical stories and forking paths. Nat Rev Genet, 2(8), 584–596. https://doi.org/10.1038/35084512Full Text Link to Item
-
Sullivan, B. A., & Bickmore, W. A. (2000). Unusual chromosome architecture and behaviour at an HSR. Chromosoma, 109(3), 181–189. https://doi.org/10.1007/s004120050426Full Text Link to Item
-
Sullivan, B. A., & Willard, H. F. (1998). Stable dicentric X chromosomes with two functional centromeres. Nat Genet, 20(3), 227–228. https://doi.org/10.1038/3024Full Text Link to Item
-
Flejter, W. L., Issa, B., Sullivan, B. A., Carey, J. C., & Brothman, A. R. (1998). Variegated aneuploidy in two siblings: phenotype, genotype, CENP-E analysis, and literature review. Am J Med Genet, 75(1), 45–51.Link to Item
-
Warburton, P. E., Cooke, C. A., Bourassa, S., Vafa, O., Sullivan, B. A., Stetten, G., … Earnshaw, W. C. (1997). Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Curr Biol, 7(11), 901–904. https://doi.org/10.1016/s0960-9822(06)00382-4Full Text Link to Item
-
Depinet, T. W., Zackowski, J. L., Earnshaw, W. C., Kaffe, S., Sekhon, G. S., Stallard, R., … Schwartz, S. (1997). Characterization of neo-centromeres in marker chromosomes lacking detectable alpha-satellite DNA. Hum Mol Genet, 6(8), 1195–1204. https://doi.org/10.1093/hmg/6.8.1195Full Text Link to Item
-
Sullivan, B. A., Jenkins, L. S., Karson, E. M., Leana-Cox, J., & Schwartz, S. (1996). Evidence for structural heterogeneity from molecular cytogenetic analysis of dicentric Robertsonian translocations. Am J Hum Genet, 59(1), 167–175.Link to Item
-
Sullivan, B. A., Schwartz, S., & Willard, H. F. (1996). Centromeres of human chromosomes. Environ Mol Mutagen, 28(3), 182–191. https://doi.org/10.1002/(SICI)1098-2280(1996)28:3<182::AID-EM4>3.0.CO;2-GFull Text Link to Item
-
Sullivan, B. A., & Schwartz, S. (1995). Identification of centromeric antigens in dicentric Robertsonian translocations: CENP-C and CENP-E are necessary components of functional centromeres. Hum Mol Genet, 4(12), 2189–2197. https://doi.org/10.1093/hmg/4.12.2189Full Text Link to Item
-
Sullivan, B. A., Schiffer, C. A., Patil, S. R., Hulseberg, D., Leana-Cox, J., & Schwartz, S. (1995). Application of FISH to complex chromosomal rearrangements associated with chronic myelogenous leukemia. Cancer Genet Cytogenet, 82(2), 93–99. https://doi.org/10.1016/0165-4608(94)00075-mFull Text Link to Item
-
Sullivan, B. A., Wolff, D. J., & Schwartz, S. (1994). Analysis of centromeric activity in Robertsonian translocations: implications for a functional acrocentric hierarchy. Chromosoma, 103(7), 459–467. https://doi.org/10.1007/BF00337384Full Text Link to Item
-
Sullivan, B. A., Leana-Cox, J., & Schwartz, S. (1993). Clarification of subtle reciprocal rearrangements using fluorescence in situ hybridization. Am J Med Genet, 47(2), 223–230. https://doi.org/10.1002/ajmg.1320470217Full Text Link to Item
-
Leana-Cox, J., Levin, S., Surana, R., Wulfsberg, E., Keene, C. L., Raffel, L. J., … Schwartz, S. (1993). Characterization of de novo duplications in eight patients by using fluorescence in situ hybridization with chromosome-specific DNA libraries. Am J Hum Genet, 52(6), 1067–1073.Link to Item
-
-
Book Sections
-
Sullivan, B. A. (2021). Further reading. In Encyclopedia of Biological Chemistry: Third Edition (Vol. 5, pp. 496–502). https://doi.org/10.1016/B978-0-12-819460-7.00297-8Full Text
-
Ross, J. E., McNulty, S. M., & Sullivan, B. A. (2015). The Epigenetics of Centromere Function. In EPIGENETICS: CURRENT RESEARCH AND EMERGING TRENDS (pp. 133–166).Link to Item
-
Stimpson, K. M., & Sullivan, B. A. (2013). Centromere. In Brenner’s Encyclopedia of Genetics: Second Edition (pp. 500–502). https://doi.org/10.1016/B978-0-12-374984-0.00219-9Full Text
-
Sullivan, B. A. (2013). Nondisjunction. In Brenner’s Encyclopedia of Genetics: Second Edition (pp. 90–93). https://doi.org/10.1016/B978-0-12-374984-0.01056-1Full Text
-
Sullivan, B. A. (2013). Centromeres. In Encyclopedia of Biological Chemistry: Second Edition (pp. 446–450). https://doi.org/10.1016/B978-0-12-378630-2.00471-0Full Text
-
Caruana Scott, K. S., & Sullivan, B. A. (2005). Epigenetic inheritance and RNAi at the centromere and heterochromatin. In Encyclopedia of Genetics, Genomics, Proteomics and Bioinformatics. John Wiley & Sons, Ltd. https://doi.org/10.1002/047001153x.g103322Full Text
-
Sullivan, B. A. (2004). Centromeres. In Encyclopedia of Biological Chemistry (pp. 367–371). Elsevier. https://doi.org/10.1016/b0-12-443710-9/00099-5Full Text
-
-
Conference Papers
-
McNulty, S. M., Sullivan, L. L., & Sullivan, B. A. (2017). Human centromeres produce non-coding alpha satellite RNAs that are chromosome-specific and required for centromere protein loading. In Molecular Biology of the Cell (Vol. 28). Philadelphia, PA: AMER SOC CELL BIOLOGY.Link to Item
-
McNulty, S. M., Sullivan, L. L., & Sullivan, B. A. (2017). Human centromeres produce non-coding alpha satellite RNAs that are chromosome-specific and required for centromere protein loading. In Molecular Biology of the Cell (Vol. 28).Link to Item
-
Sullivan, B. A., Skora, A. D., Le, H. D., & Karpen, G. H. (2002). CENP-A chromatin contains "euchromatic" histone modifications. In American Journal of Human Genetics (Vol. 71, pp. 218–218). BALTIMORE, MARYLAND: UNIV CHICAGO PRESS.Link to Item
-
SULLIVAN, B. A., & SCHWARTZ, S. (1995). IDENTIFICATION OF CENTROMERE-SPECIFIC ANTIGENS IN DICENTRIC ROBERTSONIAN TRANSLOCATIONS - CENP-C AND CENP-E ARE ESSENTIAL COMPONENTS OF FUNCTIONAL CENTROMERES. In American Journal of Human Genetics (Vol. 57, pp. 76–76). UNIV CHICAGO PRESS.Link to Item
-
SCHWARTZ, S., LEANACOX, J., DEPINET, T. W., POWERS, V., WILLARD, H. F., & SULLIVAN, B. A. (1993). IDENTIFICATION OF SUPERNUMERARY AUTOSOMAL CHROMOSOMES AND UNBALANCED DE-NOVO REARRANGEMENTS WITH FISH - EXPERIENCE WITH 78 CASES. In American Journal of Human Genetics (Vol. 53, pp. 257–257). UNIV CHICAGO PRESS.Link to Item
-
SULLIVAN, B. A., WOLFF, D. J., & SCHWARTZ, S. (1993). MOLECULAR CYTOGENETIC ASSESSMENT OF CENTROMERIC ACTIVITY IN DICENTRIC ROBERTSONIAN TRANSLOCATIONS. In American Journal of Human Genetics (Vol. 53, pp. 122–122). UNIV CHICAGO PRESS.Link to Item
-
-
- Teaching & Mentoring
-
Recent Courses
- BIOTRAIN 701: Foundations of Professionalism for Biomedical Scientists 2023
- BIOTRAIN 720: Grant Writing for Biomedical Scientists 2023
- BIOTRAIN 750: Introduction to Responsible Conduct of Research Concepts 2023
- MGM 293: Research Independent Study I 2023
- BIOTRAIN 701: Foundations of Professionalism for Biomedical Scientists 2022
- BIOTRAIN 720: Grant Writing for Biomedical Scientists 2022
- BIOTRAIN 730: Data Visualization for Biomedical Sciences 2022
- BIOTRAIN 750: Introduction to Responsible Conduct of Research Concepts 2022
- MGM 593: Research Independent Study 2022
- BIOTRAIN 701: Foundations of Professionalism for Biomedical Scientists 2021
- BIOTRAIN 720: Grant Writing for Biomedical Scientists 2021
- FOCUS 195FS: Special Topics in Focus 2021
- GENOME 222FS: Genetics and Epigenetics: The Codes that Control Our Genomes 2021
- MGM 222FS: Genetics and Epigenetics: The Codes that Control Our Genomes 2021
- MGM 293: Research Independent Study I 2021
- MGM 593: Research Independent Study 2021
- NEUROSCI 392: Neuroscience Independent Scholarship 2: Advanced Topics 2021
- Scholarly, Clinical, & Service Activities
-
Service to the Profession
- Chair-elect, Program Committee. Annual National Meeting. American Society of Human Genetics. 2023 2023
- Editor in Chief. Chromosome Research. 2021 2021
- Member, Program Committee. Annual National Meeting. American Society of Human Genetics. 2018 - 2020 2018 - 2020
- Chair. Centromere Biology Meeting. Gordon Research Conferences. 2016 - 2016 2016
- Chair. Awards Committee. American Society of Human Genetics. 2014 - 2015 2014 - 2015
- Vice-Chair. Centromere Biology Meeting. Gordon Research Conferences. 2014 - 2014 2014
- Executive Editor. Chromosome Research. 2013 - 2020 2013 - 2020
- Associate Editor. PLOS Genetics. 2012 2012
-
Service to Duke
Some information on this profile has been compiled automatically from Duke databases and external sources. (Our About page explains how this works.) If you see a problem with the information, please write to Scholars@Duke and let us know. We will reply promptly.