Hedgehog pathway inhibition in chondrosarcoma using the smoothened inhibitor IPI-926 directly inhibits sarcoma cell growth.

Journal Article

Hedgehog (Hh) pathway inhibition in cancer has been evaluated in both the ligand-independent and ligand-dependent settings, where Hh signaling occurs either directly within the cancer cells or within the nonmalignant cells of the tumor microenvironment. Chondrosarcoma is a malignant tumor of cartilage in which there is ligand-dependent activation of Hh signaling. IPI-926 is a potent, orally delivered small molecule that inhibits Hh pathway signaling by binding to Smoothened (SMO). Here, the impact of Hh pathway inhibition on primary chondrosarcoma xenografts was assessed. Mice bearing primary human chondrosarcoma xenografts were treated with IPI-926. The expression levels of known Hh pathway genes, in both the tumor and stroma, and endpoint tumor volumes were measured. Gene expression profiling of tumors from IPI-926-treated mice was conducted to identify potential novel Hh target genes. Hh target genes were studied to determine their contribution to the chondrosarcoma neoplastic phenotype. IPI-926 administration results in downmodulation of the Hh pathway in primary chondrosarcoma xenografts, as demonstrated by evaluation of the Hh target genes GLI1 and PTCH1, as well as inhibition of tumor growth. Chondrosarcomas exhibited autocrine and paracrine Hh signaling, and both were affected by IPI-926. Decreased tumor growth is accompanied by histopathologic changes, including calcification and loss of tumor cells. Gene profiling studies identified genes differentially expressed in chondrosarcomas following IPI-926 treatment, one of which, ADAMTSL1, regulates chondrosarcoma cell proliferation. These studies provide further insight into the role of the Hh pathway in chondrosarcoma and provide a scientific rationale for targeting the Hh pathway in chondrosarcoma.

Full Text

Duke Authors

Cited Authors

  • Campbell, VT; Nadesan, P; Ali, SA; Wang, CYY; Whetstone, H; Poon, R; Wei, Q; Keilty, J; Proctor, J; Wang, LW; Apte, SS; McGovern, K; Alman, BA; Wunder, JS

Published Date

  • May 2014

Published In

Volume / Issue

  • 13 / 5

Start / End Page

  • 1259 - 1269

PubMed ID

  • 24634412

Electronic International Standard Serial Number (EISSN)

  • 1538-8514

International Standard Serial Number (ISSN)

  • 1535-7163

Digital Object Identifier (DOI)

  • 10.1158/1535-7163.mct-13-0731

Language

  • eng