Weight-bearing asymmetry in individuals post-hip fracture during the sit to stand task.

Journal Article (Journal Article)

BACKGROUND: Individuals post hip fracture decrease force on the involved limb during sit to stand tasks, creating an asymmetry in vertical ground reaction force. Joint specific differences that underlie asymmetry of the vertical ground reaction force are unknown. The purpose of this study was to compare differences in vertical ground reaction force variables and joint kinetics at the hip and knee in participants post-hip fracture, who were recently discharged from homecare physical therapy to controls. METHODS: Forty-four community-dwelling older adults, 29 who had a hip fracture and 15 elderly control participant's completed the sit to stand task on an instrumented chair with 3 force plates. T-tests were used to compare clinical tests (Berg Balance Scale, activity balance confidence and gait speed, isokinetic knee strength) and vertical ground reaction force variables. Two-way analyses of variance compared vertical ground reaction force variables and kinetics at the hip and knee between hip fracture and elderly control groups. Pearson correlation coefficients were used to determine correlations between clinical and vertical ground reaction force variables. FINDINGS: Vertical ground reaction force variables were significantly lower on the involved side for the hip fracture group compared to the uninvolved side and controls. Lower involved side hip and knee moments and power contributed to lower involved side vertical ground reaction force. Vertical ground reaction force variables and strength had moderate to high correlations with clinical measures. INTERPRETATION: Uninvolved side knee moments and powers were the largest contributors to asymmetrical vertical ground reaction force in participants post-hip fracture. The association of vertical ground reaction force variables and clinical measures of function suggesting reducing vertical ground reaction force asymmetry may contribute to higher levels of function post-hip fracture. Functional and strength training should target the involved knee to reduce vertical ground reaction force asymmetry.

Full Text

Duke Authors

Cited Authors

  • Kneiss, JA; Hilton, TN; Tome, J; Houck, JR

Published Date

  • January 2015

Published In

Volume / Issue

  • 30 / 1

Start / End Page

  • 14 - 21

PubMed ID

  • 25497603

Electronic International Standard Serial Number (EISSN)

  • 1879-1271

Digital Object Identifier (DOI)

  • 10.1016/j.clinbiomech.2014.11.012


  • eng

Conference Location

  • England