A theoretical study of inertial cavitation from acoustic radiation force impulse imaging and implications for the mechanical index.

Published

Journal Article

The mechanical index (MI) attempts to quantify the likelihood that exposure to diagnostic ultrasound will produce an adverse biological effect by a non-thermal mechanism. The current formulation of the MI implicitly assumes that the acoustic field is generated using the short pulse durations appropriate to B-mode imaging. However, acoustic radiation force impulse (ARFI) imaging employs high-intensity pulses up to several hundred acoustic periods long. The effect of increased pulse durations on the thresholds for inertial cavitation was studied computationally in water, urine, blood, cardiac and skeletal muscle, brain, kidney, liver and skin. The results indicate that, although the effect of pulse duration on cavitation thresholds in the three liquids can be considerable, reducing them by, for example, 6%-24% at 1 MHz, the effect on tissue is minor. More importantly, the frequency dependence of the MI appears to be unnecessarily conservative; that is, the magnitude of the exponent on frequency could be increased to 0.75. Comparison of these theoretical results with experimental measurements suggests that some tissues do not contain the pre-existing, optimally sized bubbles assumed for the MI. This means that in these tissues, the MI is not necessarily a strong predictor of the probability of an adverse biological effect.

Full Text

Duke Authors

Cited Authors

  • Church, CC; Labuda, C; Nightingale, K

Published Date

  • February 2015

Published In

Volume / Issue

  • 41 / 2

Start / End Page

  • 472 - 485

PubMed ID

  • 25592457

Pubmed Central ID

  • 25592457

Electronic International Standard Serial Number (EISSN)

  • 1879-291X

International Standard Serial Number (ISSN)

  • 0301-5629

Digital Object Identifier (DOI)

  • 10.1016/j.ultrasmedbio.2014.09.012

Language

  • eng