Jamming criticality revealed by removing localized buckling excitations.

Journal Article (Journal Article)

Recent theoretical advances offer an exact, first-principles theory of jamming criticality in infinite dimension as well as universal scaling relations between critical exponents in all dimensions. For packings of frictionless spheres near the jamming transition, these advances predict that nontrivial power-law exponents characterize the critical distribution of (i) small interparticle gaps and (ii) weak contact forces, both of which are crucial for mechanical stability. The scaling of the interparticle gaps is known to be constant in all spatial dimensions d-including the physically relevant d=2 and 3, but the value of the weak force exponent remains the object of debate and confusion. Here, we resolve this ambiguity by numerical simulations. We construct isostatic jammed packings with extremely high accuracy, and introduce a simple criterion to separate the contribution of particles that give rise to localized buckling excitations, i.e., bucklers, from the others. This analysis reveals the remarkable dimensional robustness of mean-field marginality and its associated criticality.

Full Text

Duke Authors

Cited Authors

  • Charbonneau, P; Corwin, EI; Parisi, G; Zamponi, F

Published Date

  • March 27, 2015

Published In

Volume / Issue

  • 114 / 12

Start / End Page

  • 125504 -

PubMed ID

  • 25860759

Electronic International Standard Serial Number (EISSN)

  • 1079-7114

International Standard Serial Number (ISSN)

  • 0031-9007

Digital Object Identifier (DOI)

  • 10.1103/physrevlett.114.125504


  • eng