Resource base influences genome-wide DNA methylation levels in wild baboons (Papio cynocephalus).

Journal Article

Variation in resource availability commonly exerts strong effects on fitness-related traits in wild animals. However, we know little about the molecular mechanisms that mediate these effects, or about their persistence over time. To address these questions, we profiled genome-wide whole-blood DNA methylation levels in two sets of wild baboons: (i) 'wild-feeding' baboons that foraged naturally in a savanna environment and (ii) 'Lodge' baboons that had ready access to spatially concentrated human food scraps, resulting in high feeding efficiency and low daily travel distances. We identified 1014 sites (0.20% of sites tested) that were differentially methylated between wild-feeding and Lodge baboons, providing the first evidence that resource availability shapes the epigenome in a wild mammal. Differentially methylated sites tended to occur in contiguous stretches (i.e., in differentially methylated regions or DMRs), in promoters and enhancers, and near metabolism-related genes, supporting their functional importance in gene regulation. In agreement, reporter assay experiments confirmed that methylation at the largest identified DMR, located in the promoter of a key glycolysis-related gene, was sufficient to causally drive changes in gene expression. Intriguingly, all dispersing males carried a consistent epigenetic signature of their membership in a wild-feeding group, regardless of whether males dispersed into or out of this group as adults. Together, our findings support a role for DNA methylation in mediating ecological effects on phenotypic traits in the wild and emphasize the dynamic environmental sensitivity of DNA methylation levels across the life course.

Full Text

Duke Authors

Cited Authors

  • Lea, AJ; Altmann, J; Alberts, SC; Tung, J

Published Date

  • April 2016

Published In

Volume / Issue

  • 25 / 8

Start / End Page

  • 1681 - 1696

PubMed ID

  • 26508127

Electronic International Standard Serial Number (EISSN)

  • 1365-294X

International Standard Serial Number (ISSN)

  • 0962-1083

Digital Object Identifier (DOI)

  • 10.1111/mec.13436

Language

  • eng