Skip to main content

Construction of a global pain systems network highlights phospholipid signaling as a regulator of heat nociception.

Publication ,  Journal Article
Neely, GG; Rao, S; Costigan, M; Mair, N; Racz, I; Milinkeviciute, G; Meixner, A; Nayanala, S; Griffin, RS; Belfer, I; Dai, F; Smith, S ...
Published in: PLoS Genet
2012

The ability to perceive noxious stimuli is critical for an animal's survival in the face of environmental danger, and thus pain perception is likely to be under stringent evolutionary pressure. Using a neuronal-specific RNAi knock-down strategy in adult Drosophila, we recently completed a genome-wide functional annotation of heat nociception that allowed us to identify α2δ3 as a novel pain gene. Here we report construction of an evolutionary-conserved, system-level, global molecular pain network map. Our systems map is markedly enriched for multiple genes associated with human pain and predicts a plethora of novel candidate pain pathways. One central node of this pain network is phospholipid signaling, which has been implicated before in pain processing. To further investigate the role of phospholipid signaling in mammalian heat pain perception, we analysed the phenotype of PIP5Kα and PI3Kγ mutant mice. Intriguingly, both of these mice exhibit pronounced hypersensitivity to noxious heat and capsaicin-induced pain, which directly mapped through PI3Kγ kinase-dead knock-in mice to PI3Kγ lipid kinase activity. Using single primary sensory neuron recording, PI3Kγ function was mechanistically linked to a negative regulation of TRPV1 channel transduction. Our data provide a systems map for heat nociception and reinforces the extraordinary conservation of molecular mechanisms of nociception across different species.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

PLoS Genet

DOI

EISSN

1553-7404

Publication Date

2012

Volume

8

Issue

12

Start / End Page

e1003071

Location

United States

Related Subject Headings

  • TRPV Cation Channels
  • Signal Transduction
  • Phosphotransferases (Alcohol Group Acceptor)
  • Phospholipids
  • Nociceptive Pain
  • Neurons, Afferent
  • Mice
  • Hypersensitivity
  • Humans
  • Hot Temperature
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Neely, G. G., Rao, S., Costigan, M., Mair, N., Racz, I., Milinkeviciute, G., … Penninger, J. M. (2012). Construction of a global pain systems network highlights phospholipid signaling as a regulator of heat nociception. PLoS Genet, 8(12), e1003071. https://doi.org/10.1371/journal.pgen.1003071
Neely, G Gregory, Shuan Rao, Michael Costigan, Norbert Mair, Ildiko Racz, Giedre Milinkeviciute, Arabella Meixner, et al. “Construction of a global pain systems network highlights phospholipid signaling as a regulator of heat nociception.PLoS Genet 8, no. 12 (2012): e1003071. https://doi.org/10.1371/journal.pgen.1003071.
Neely GG, Rao S, Costigan M, Mair N, Racz I, Milinkeviciute G, et al. Construction of a global pain systems network highlights phospholipid signaling as a regulator of heat nociception. PLoS Genet. 2012;8(12):e1003071.
Neely, G. Gregory, et al. “Construction of a global pain systems network highlights phospholipid signaling as a regulator of heat nociception.PLoS Genet, vol. 8, no. 12, 2012, p. e1003071. Pubmed, doi:10.1371/journal.pgen.1003071.
Neely GG, Rao S, Costigan M, Mair N, Racz I, Milinkeviciute G, Meixner A, Nayanala S, Griffin RS, Belfer I, Dai F, Smith S, Diatchenko L, Marengo S, Haubner BJ, Novatchkova M, Gibson D, Maixner W, Pospisilik JA, Hirsch E, Whishaw IQ, Zimmer A, Gupta V, Sasaki J, Kanaho Y, Sasaki T, Kress M, Woolf CJ, Penninger JM. Construction of a global pain systems network highlights phospholipid signaling as a regulator of heat nociception. PLoS Genet. 2012;8(12):e1003071.

Published In

PLoS Genet

DOI

EISSN

1553-7404

Publication Date

2012

Volume

8

Issue

12

Start / End Page

e1003071

Location

United States

Related Subject Headings

  • TRPV Cation Channels
  • Signal Transduction
  • Phosphotransferases (Alcohol Group Acceptor)
  • Phospholipids
  • Nociceptive Pain
  • Neurons, Afferent
  • Mice
  • Hypersensitivity
  • Humans
  • Hot Temperature