Treatment of inflammatory arthritis via targeting of tristetraprolin, a master regulator of pro-inflammatory gene expression.

Published

Journal Article

Tristetraprolin (TTP), a negative regulator of many pro-inflammatory genes, is strongly expressed in rheumatoid synovial cells. The mitogen-activated protein kinase (MAPK) p38 pathway mediates the inactivation of TTP via phosphorylation of two serine residues. We wished to test the hypothesis that these phosphorylations contribute to the development of inflammatory arthritis, and that, conversely, joint inflammation may be inhibited by promoting the dephosphorylation and activation of TTP.The expression of TTP and its relationship with MAPK p38 activity were examined in non-inflamed and rheumatoid arthritis (RA) synovial tissue. Experimental arthritis was induced in a genetically modified mouse strain, in which endogenous TTP cannot be phosphorylated and inactivated. In vitro and in vivo experiments were performed to test anti-inflammatory effects of compounds that activate the protein phosphatase 2A (PP2A) and promote dephosphorylation of TTP.TTP expression was significantly higher in RA than non-inflamed synovium, detected in macrophages, vascular endothelial cells and some fibroblasts and co-localised with MAPK p38 activation. Substitution of TTP phosphorylation sites conferred dramatic protection against inflammatory arthritis in mice. Two distinct PP2A agonists also reduced inflammation and prevented bone erosion. In vitro anti-inflammatory effects of PP2A agonism were mediated by TTP activation.The phosphorylation state of TTP is a critical determinant of inflammatory responses, and a tractable target for novel anti-inflammatory treatments.

Full Text

Duke Authors

Cited Authors

  • Ross, EA; Naylor, AJ; O'Neil, JD; Crowley, T; Ridley, ML; Crowe, J; Smallie, T; Tang, TJ; Turner, JD; Norling, LV; Dominguez, S; Perlman, H; Verrills, NM; Kollias, G; Vitek, MP; Filer, A; Buckley, CD; Dean, JL; Clark, AR

Published Date

  • March 2017

Published In

Volume / Issue

  • 76 / 3

Start / End Page

  • 612 - 619

PubMed ID

  • 27597652

Pubmed Central ID

  • 27597652

Electronic International Standard Serial Number (EISSN)

  • 1468-2060

International Standard Serial Number (ISSN)

  • 0003-4967

Digital Object Identifier (DOI)

  • 10.1136/annrheumdis-2016-209424

Language

  • eng