VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting.

Published

Journal Article

Although our understanding of the molecular regulation of adult neovascularization has advanced tremendously, vascular-targeted therapies for tissue ischemia remain suboptimal. The master regulatory transcription factors of the hypoxia-inducible factor (HIF) family are attractive therapeutic targets because they coordinately up-regulate multiple genes controlling neovascularization. Here, we used an inducible model of epithelial HIF-1 activation, the TetON-HIF-1 mouse, to test the requirement for VEGF in HIF-1 mediated neovascularization. TetON-HIF-1, K14-Cre, and VEGF(flox/flox) alleles were combined to create TetON-HIF-1:VEGF(Δ) mice to activate HIF-1 and its target genes in adult basal keratinocytes in the absence of concomitant VEGF. HIF-1 induction failed to produce neovascularization in TetON-HIF-1:VEGF(Δ) mice despite robust up-regulation of multiple proangiogenic HIF targets, including PlGF, adrenomedullin, angiogenin, and PAI-1. In contrast, endothelial sprouting was preserved, enhanced, and more persistent, consistent with marked reduction in Dll4-Notch-1 signaling. Optical-resolution photoacoustic microscopy, which provides noninvasive, label-free, high resolution, and wide-field vascular imaging, revealed the absence of both capillary expansion and arteriovenous remodeling in serially imaged individual TetON-HIF-1:VEGF(Δ) mice. Impaired TetON-HIF-1:VEGF(Δ) neovascularization could be partially rescued by 12-O-tetradecanoylphorbol-13-acetate skin treatment. These data suggest that therapeutic angiogenesis for ischemic cardiovascular disease may require treatment with both HIF-1 and VEGF.

Full Text

Duke Authors

Cited Authors

  • Oladipupo, S; Hu, S; Kovalski, J; Yao, J; Santeford, A; Sohn, RE; Shohet, R; Maslov, K; Wang, LV; Arbeit, JM

Published Date

  • August 2011

Published In

Volume / Issue

  • 108 / 32

Start / End Page

  • 13264 - 13269

PubMed ID

  • 21784979

Pubmed Central ID

  • 21784979

Electronic International Standard Serial Number (EISSN)

  • 1091-6490

International Standard Serial Number (ISSN)

  • 0027-8424

Digital Object Identifier (DOI)

  • 10.1073/pnas.1101321108

Language

  • eng