New sensitive micro-measurements of dynamic surface tension and diffusion coefficients: Validated and tested for the adsorption of 1-Octanol at a microscopic air-water interface and its dissolution into water.

Journal Article (Journal Article)

Currently available dynamic surface tension (DST) measurement methods, such as Wilhelmy plate, droplet- or bubble-based methods, still have various experimental limitations such as the large size of the interface, convection in the solution, or a certain "dead time" at initial measurement. These limitations create inconsistencies for the kinetic analysis of surfactant adsorption/desorption, especially significant for ionic surfactants. Here, the "micropipette interfacial area-expansion method" was introduced and validated as a new DST measurement having a high enough sensitivity to detect diffusion controlled molecular adsorption at the air-water interfaces. To validate the new technique, the diffusion coefficient of 1-Octanol in water was investigated with existing models: the Ward Tordai model for the long time adsorption regime (1-100s), and the Langmuir and Frumkin adsorption isotherm models for surface excess concentration. We found that the measured diffusion coefficient of 1-Octanol, 7.2±0.8×10-6 cm2 /s, showed excellent agreement with the result from an alternative method, "single microdroplet catching method", to measure the diffusion coefficient from diffusion-controlled microdroplet dissolution, 7.3±0.1×10-6 cm2 /s. These new techniques for determining adsorption and diffusion coefficients can apply for a range of surface active molecules, especially the less-characterized ionic surfactants, and biological compounds such as lipids, peptides, and proteins.

Full Text

Duke Authors

Cited Authors

  • Kinoshita, K; Parra, E; Needham, D

Published Date

  • February 2017

Published In

Volume / Issue

  • 488 /

Start / End Page

  • 166 - 179

PubMed ID

  • 27825061

Electronic International Standard Serial Number (EISSN)

  • 1095-7103

International Standard Serial Number (ISSN)

  • 0021-9797

Digital Object Identifier (DOI)

  • 10.1016/j.jcis.2016.10.052


  • eng