David Needham
Professor in the Department of Mechanical Engineering and Materials Science

Professor Needham has been at Duke since 1987 and over the years has developed many collaborative and scholarly relationships across the campus and Medical School. He holds Faculty and membership appointments as: Associate Professor of Biomedical Engineering; Center for Bioinspired Materials and Material Systems; Center for Biomolecular and Tissue Engineering; Duke Comprehensive Cancer Center; and the Duke Cancer Institute.  Internationally, he holds a joint appointment as Professor of Translational Therapeutics in the School of Pharmacy, at the University of Nottingham, UK.  He also collaborates with preclinical researchers at the Erasmus University Medical Center, in Rotterdam, NL. 
For the past 35 years Needham's Lab has developed and used a platform technology of micropipette manipulation to manipulate single and pairs of micro bubbles, droplets and particles in order to assess their behavior in well-defined fluids and solution conditions.  Recently his research and development has focused on nucleation, growth and stability of nanoparticles.  Applications of these fundamental particle and interfacial studies have primarily focused on advanced drug delivery treatments for cancer and now COVID19 with a nasal and throat spray prophylactic and early treatment regimen.

Current Research Interests

Needham’s research and development is nothing if it is not collaborative.

 For the past 35 years Needham's Lab has developed and used a platform technology of micropipette manipulation to manipulate single and pairs of micro particles in order to assess their behavior in well-defined fluids and solution conditions. With these techniques, he brings a wealth of expertise in colloid and interfacial science and engineering evaluating all 3 states of matter and their 5 interfaces, at the microscale, as micro-bubbles, -drops and -particles. Results of these kinds of studies have impacted: bubble technology for ultrasound; Droplet Interface Bilayers (DIBs) in collaboration with the Hagan Bayley lab at the University of Oxford UK; as well as the microglassification of proteins and peptides for storage, transport and use.  This technology is now being developed by his ex-graduate student now CEO and Founder of Lindy Biosciences, Deborah Bitterfield PhD. Other industrial collaborations arising from the micropipet studies include with Gary Fujii, PhD, CEO and Founder of Molecular Express Inc in Los Angeles, California on a variety of products including a new lung surfactant for respiratory distress syndromes

 Applications of these fundamental particle and interfacial studies have primarily focused on advanced drug delivery treatments for cancer. Of note over the past 20 years has been his invention and development of the Low-Temperature-Sensitive Liposome system for treatment of local cancers that can be warmed by mild hyperthermia.  This 1996 invention was pre-clinically and clinically developed with collaborators in the Duke Medical Center, specifically with Dr. Mark Dewhirst PhD DVM (now retired) and his then Hyperthermia Program in Radiation Oncology and the Duke Cancer Institute and licensed to Celsion Corporation.

 Recently his research and development has focused on nanoparticles, again for anti-cancer applications. Recognizing that cancers are known to “feed” on Low Density Lipoprotein (LDL) particles (--sub microscopic nanoparticles composed of fat and protein) from the blood stream, his new strategy is to “make the drug look like the cancer’s food”. The new technology turns the low solubility “bricks” of the pharmaceutical industry, that are very difficult to administer in effective doses by oral tablets, and turns them into much less soluble “rocks” so that they can be made into the LDL-sized nanoparticles for intravenous delivery. This work is in close collaboration with his colleague, Dave Gooden PhD, Director of the Duke Small Molecule Synthesis Facility; hence their “Bricks-to-Rocks Technology (B2RT).  Here, in collaboration, with Will Eward DVM, MD Dept of Surgical Oncology and Ivan Spasojevic, PhD, Director of the PK/PD core, they have pioneered testing this new kind of anti-cancer drug nanoparticle. It has already shown positive results in a lung-metastatic mouse model of Osteosarcoma, as well as in a recent feasibility trial in canine patients with Steve Suter VMD, MS, PhD, DACVIM and colleagues at the NC State Veterinary School.

Finally, over the past year, responding to the COVID19 pandemic, Needham has developed 11 provisional patent applications and one in particular is now forming the basis for a new nasal and throat spray that is intended for use as a Prophylactic-Preventative and in early treatment of COVID19.  This work is being carried out in a new collaboration with the Division Chief of Pulmonary, Allergy and Critical Care Medicine, Dr Patty Lee and her lab. Together they are actively pursuing pre-Investigational New Drug (IND) studies required to advance the new spray to testing in patients.  

Current Appointments & Affiliations

Contact Information

  • 3391 Fciemas Building, Box 90300, Durham, NC 27708
  • 3391 Fciemas Building, Box 90300, Durham, NC 27708-0300

Some information on this profile has been compiled automatically from Duke databases and external sources. (Our About page explains how this works.) If you see a problem with the information, please write to Scholars@Duke and let us know. We will reply promptly.