Skip to main content
Journal cover image

Exercise training effects on skeletal muscle plasticity and IGF-1 receptors in frail elders.

Publication ,  Journal Article
Urso, ML; Fiatarone Singh, MA; Ding, W; Evans, WJ; Cosmas, AC; Manfredi, TG
Published in: Age (Dordr)
June 2005

Age-related sarcopenia inhibits mobility, increasing the risk for developing many diseases, including diabetes, arthritis, osteoporosis, and heart disease. Tissue plasticity, or the ability to regenerate following stress, has been a subject of question in aging humans. We assessed the impact of 10-weeks of resistance training on markers of skeletal muscle plasticity and insulin growth factor-1 (IGF-1) receptor density in a sub sample of subjects who, in an earlier study, demonstrated enhanced immunohistochemical labeling of IGF following resistance training. Muscle biopsies from the vastus lateralis of five elderly men and women were taken prior to and following 10 weeks of resistance training (N = 3) or a control period (N = 2). Immunogold labeling and quantitative electron microscopy techniques were used to analyze markers of IGF-1 receptor density and tissue plasticity. The experimental subjects showed a 161 ± 93.7% increase in Z band damage following resistance training. Myofibrillar central nuclei increased 296 ± 120% (P = 0. 029) in the experimental subjects. Changes in the percent of damaged Z bands were associated with alterations in the presence of central nuclei (r = 0.668; P = 0.0347). Post hoc analysis revealed that the relative pre/post percent changes in myofibrillar Z band damage and central nuclei were not statistically different between the control and exercise groups. Exercise training increased myofibrillar IGF-1 receptor densities in the exercise subjects (P = 0.008), with a non-significant increase in the control group. Labeling patterns suggested enhanced receptor density around the Z bands, sarcolemma, and mitochondrial and nuclear membranes. Findings from this study suggest that the age-related downregulation of the skeletal muscle IGF-1 system may be reversed to some extent with progressive resistance training. Furthermore, skeletal muscle tissue plasticity in the frail elderly is maintained at least to some extent as exemplified by the enhancement of IGF-1 receptor density and markers of tissue regeneration.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Age (Dordr)

DOI

ISSN

0161-9152

Publication Date

June 2005

Volume

27

Issue

2

Start / End Page

117 / 125

Location

Netherlands

Related Subject Headings

  • Gerontology
  • 52 Psychology
  • 32 Biomedical and clinical sciences
  • 31 Biological sciences
  • 17 Psychology and Cognitive Sciences
  • 11 Medical and Health Sciences
  • 06 Biological Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Urso, M. L., Fiatarone Singh, M. A., Ding, W., Evans, W. J., Cosmas, A. C., & Manfredi, T. G. (2005). Exercise training effects on skeletal muscle plasticity and IGF-1 receptors in frail elders. Age (Dordr), 27(2), 117–125. https://doi.org/10.1007/s11357-005-1629-7
Urso, Maria L., Maria A. Fiatarone Singh, Wenjing Ding, William J. Evans, Arthur C. Cosmas, and Thomas G. Manfredi. “Exercise training effects on skeletal muscle plasticity and IGF-1 receptors in frail elders.Age (Dordr) 27, no. 2 (June 2005): 117–25. https://doi.org/10.1007/s11357-005-1629-7.
Urso ML, Fiatarone Singh MA, Ding W, Evans WJ, Cosmas AC, Manfredi TG. Exercise training effects on skeletal muscle plasticity and IGF-1 receptors in frail elders. Age (Dordr). 2005 Jun;27(2):117–25.
Urso, Maria L., et al. “Exercise training effects on skeletal muscle plasticity and IGF-1 receptors in frail elders.Age (Dordr), vol. 27, no. 2, June 2005, pp. 117–25. Pubmed, doi:10.1007/s11357-005-1629-7.
Urso ML, Fiatarone Singh MA, Ding W, Evans WJ, Cosmas AC, Manfredi TG. Exercise training effects on skeletal muscle plasticity and IGF-1 receptors in frail elders. Age (Dordr). 2005 Jun;27(2):117–125.
Journal cover image

Published In

Age (Dordr)

DOI

ISSN

0161-9152

Publication Date

June 2005

Volume

27

Issue

2

Start / End Page

117 / 125

Location

Netherlands

Related Subject Headings

  • Gerontology
  • 52 Psychology
  • 32 Biomedical and clinical sciences
  • 31 Biological sciences
  • 17 Psychology and Cognitive Sciences
  • 11 Medical and Health Sciences
  • 06 Biological Sciences