Plant-soil feedbacks: a comparative study on the relative importance of soil feedbacks in the greenhouse versus the field.

Published

Journal Article

Interactions between plants and soil microorganisms influence individual plant performance and thus plant-community composition. Most studies on such plant-soil feedbacks (PSFs) have been performed under controlled greenhouse conditions, whereas no study has directly compared PSFs under greenhouse and natural field conditions. We grew three grass species that differ in local abundance in grassland communities simultaneously in the greenhouse and field on field-collected soils either previously conditioned by these species or by the general grassland community. As soils in grasslands are typically conditioned by mixes of species through the patchy and heterogeneous plant species' distributions, we additionally compared the effects of species-specific versus non-specific species conditioning on PSFs in natural and greenhouse conditions. In almost all comparisons PSFs differed between the greenhouse and field. In the greenhouse, plant growth in species-specific and non-specific soils resulted in similar effects with neutral PSFs for the most abundant species and positive PSFs for the less abundant species. In contrast, in the field all grass species tested performed best in non-specific plots, whereas species-specific PSFs were neutral for the most abundant and varied for the less abundant species. This indicates a general beneficial effect of plant diversity on PSFs in the field. Controlled greenhouse conditions might provide valuable insights on the nominal effects of soils on plants. However, the PSFs observed in greenhouse conditions may not be the determining drivers in natural plant communities where their effects may be overwhelmed by the diversity of abiotic and biotic above- and belowground interactions in the field.

Full Text

Duke Authors

Cited Authors

  • Heinze, J; Sitte, M; Schindhelm, A; Wright, J; Joshi, J

Published Date

  • June 2016

Published In

Volume / Issue

  • 181 / 2

Start / End Page

  • 559 - 569

PubMed ID

  • 26922335

Pubmed Central ID

  • 26922335

Electronic International Standard Serial Number (EISSN)

  • 1432-1939

International Standard Serial Number (ISSN)

  • 0029-8549

Digital Object Identifier (DOI)

  • 10.1007/s00442-016-3591-8

Language

  • eng