Influence of pulling handles and device stiffness in single-molecule force spectroscopy.

Published

Journal Article

In single-molecule force spectroscopy, individual molecules and complexes are often stretched by pulling devices via intervening molecular handles. Accurate interpretation of measurements from such experiments in terms of the underlying energy landscape, defined by activation barriers and intrinsic rates of transition, relies on our understanding, and proper theoretical treatment, of the effects of the pulling device and handle. Here, we present a framework based on Kramers' theory that elucidates the dependence of measured rupture forces and rates on the pulling device stiffness and attributes of the handle, contour length and persistence length. We also introduce a simple analytic model that improves prediction of activation barriers and intrinsic rates for all device stiffnesses and handle properties, thus allowing for a more reliable interpretation of experiments. Our analyses also suggests intuitive ways of displaying the measured force spectra for proper prognosis of device and handle effects and provides the range of device and handle attributes over which these effects can be neglected.

Full Text

Duke Authors

Cited Authors

  • Maitra, A; Arya, G

Published Date

  • February 2011

Published In

Volume / Issue

  • 13 / 5

Start / End Page

  • 1836 - 1842

PubMed ID

  • 20938520

Pubmed Central ID

  • 20938520

Electronic International Standard Serial Number (EISSN)

  • 1463-9084

International Standard Serial Number (ISSN)

  • 1463-9076

Digital Object Identifier (DOI)

  • 10.1039/c0cp01528h

Language

  • eng