Joint modeling of longitudinal zero-inflated count and time-to-event data: A Bayesian perspective.
Journal Article (Journal Article)
Longitudinal zero-inflated count data are encountered frequently in substance-use research when assessing the effects of covariates and risk factors on outcomes. Often, both the time to a terminal event such as death or dropout and repeated measure count responses are collected for each subject. In this setting, the longitudinal counts are censored by the terminal event, and the time to the terminal event may depend on the longitudinal outcomes. In the study described herein, we expand the class of joint models for longitudinal and survival data to accommodate zero-inflated counts and time-to-event data by using a Cox proportional hazards model with piecewise constant baseline hazard. We use a Bayesian framework via Markov chain Monte Carlo simulations implemented in the BUGS programming language. Via an extensive simulation study, we apply the joint model and obtain estimates that are more accurate than those of the corresponding independence model. We apply the proposed method to an alpha-tocopherol, beta-carotene lung cancer prevention study.
Full Text
- Published version (via Digital Object Identifier)
- Pubmed Central version
- Open Access Copy from Duke
- Link to Item
Duke Authors
Cited Authors
- Zhu, H; DeSantis, SM; Luo, S
Published Date
- April 2018
Published In
Volume / Issue
- 27 / 4
Start / End Page
- 1258 - 1270
PubMed ID
- 27460540
Pubmed Central ID
- PMC5269555
Electronic International Standard Serial Number (EISSN)
- 1477-0334
Digital Object Identifier (DOI)
- 10.1177/0962280216659312
Language
- eng
Conference Location
- England