Polyvinyl Pyrrolidone: A Novel Cryoprotectant in Islet Cell Cryopreservation.

Published

Journal Article

The present study was performed on the basis of the hypothesis that the low molecular weight (MW) compounds, DMSO and glycerol, permeate the cell and interact hydrophobically with intracellular proteins, thereby perturbing the cytoskeletal architecture of frozen cells and diminishing islet cell integrity and function. Isolated rat islets were cultured overnight (18-24 h) at 37°C in RPMI medium supplemented with 10% fetal calf serum and 1% mixture of penicillin/streptomycin. Using a programmable temperature controller, samples of precounted islets were then frozen under liquid nitrogen, in the presence of either 2 M DMSO (MW = 0.078 kDa), 3 M glycerol (MW = 0.092 kDa), 5% polyethylene glycol (PEG, MW = 20 kDa), or 10% polyvinylpyrrolidone (PVP, MW = 40 kDa), and stored at -80°C for 1 week. Following thawing and overnight (18-24 h) culture, intact islet recovery was determined by islet counting after dithizone staining. Islet function was assessed by determination of glucose-stimulated insulin secretion in perifusion experiments with Krebs-Ringer bicarbonate buffer, pH 7.4, containing either basal (3.3 mM) or high (16.7 mM) glucose concentrations. The assessment of islet recovery and function of all cryopreserved samples was performed only after thawing and overnight culture (18-24 h) of islets. The mean ± SEM percent intact islet recovery was higher with PVP compared with DMSO (82 ± 4.6 vs. 62.7 ± 3.1%, respectively, p < 0.005, n = 9). Furthermore, the glucose stimulation index of insulin secretion by islets taken from samples frozen with PEG and PVP, after thawing and overnight culture, was comparable to that of freshly isolated islets, in contrast to DMSO and glycerol. There was no significant difference in intact islet recovery and function between samples frozen with PVP and those frozen with PEG. Samples frozen with DMSO and glycerol had similar results in islet recovery and function. These data show that PVP is a new and potent cryoprotectant for islet cell freezing.

Full Text

Duke Authors

Cited Authors

  • El-Shewy, HM; William, FK; Darrabie, M; Collins, BH; Opara, EC

Published Date

  • April 2004

Published In

Volume / Issue

  • 13 / 3

Start / End Page

  • 237 - 243

PubMed ID

  • 28849970

Pubmed Central ID

  • 28849970

Electronic International Standard Serial Number (EISSN)

  • 1555-3892

Digital Object Identifier (DOI)

  • 10.3727/000000004783983927

Language

  • eng

Conference Location

  • United States