Probing Computation in the Primate Visual System at Single-Cone Resolution.


Journal Article

Daylight vision begins when light activates cone photoreceptors in the retina, creating spatial patterns of neural activity. These cone signals are then combined and processed in downstream neural circuits, ultimately producing visual perception. Recent technical advances have made it possible to deliver visual stimuli to the retina that probe this processing by the visual system at its elementary resolution of individual cones. Physiological recordings from nonhuman primate retinas reveal the spatial organization of cone signals in retinal ganglion cells, including how signals from cones of different types are combined to support both spatial and color vision. Psychophysical experiments with human subjects characterize the visual sensations evoked by stimulating a single cone, including the perception of color. Future combined physiological and psychophysical experiments focusing on probing the elementary visual inputs are likely to clarify how neural processing generates our perception of the visual world. Expected final online publication date for the Annual Review of Neuroscience Volume 42 is July 8, 2019. Please see for revised estimates.

Full Text

Duke Authors

Cited Authors

  • Kling, A; Field, GD; Brainard, DH; Chichilnisky, EJ

Published Date

  • March 11, 2019

Published In

PubMed ID

  • 30857477

Pubmed Central ID

  • 30857477

Electronic International Standard Serial Number (EISSN)

  • 1545-4126

International Standard Serial Number (ISSN)

  • 0147-006X

Digital Object Identifier (DOI)

  • 10.1146/annurev-neuro-070918-050233


  • eng