Skip to main content

Exogenous PP2A inhibitor exacerbates the progression of nonalcoholic fatty liver disease via NOX2-dependent activation of miR21.

Publication ,  Journal Article
Albadrani, M; Seth, RK; Sarkar, S; Kimono, D; Mondal, A; Bose, D; Porter, DE; Scott, GI; Brooks, B; Raychoudhury, S; Nagarkatti, M; Jule, Y ...
Published in: Am J Physiol Gastrointest Liver Physiol
October 1, 2019

Nonalcoholic fatty liver disease (NAFLD) is an emerging global pandemic. Though significant progress has been made in unraveling the pathophysiology of the disease, the role of protein phosphatase 2A (PP2A) and its subsequent inhibition by environmental and genetic factors in NAFLD pathophysiology remains unclear. The present report tests the hypothesis that an exogenous PP2A inhibitor leads to hepatic inflammation and fibrogenesis via an NADPH oxidase 2 (NOX2)-dependent pathway in NAFLD. Results showed that microcystin (MC) administration, a potent PP2A inhibitor found in environmental exposure, led to an exacerbation of NAFLD pathology with increased CD68 immunoreactivity, the release of proinflammatory cytokines, and stellate cell activation, a process that was attenuated in mice that lacked the p47phox gene and miR21 knockout mice. Mechanistically, leptin-primed immortalized Kupffer cells (a mimicked model for an NAFLD condition) treated with apocynin or nitrone spin trap 5,5 dimethyl-1- pyrroline N-oxide (DMPO) had significantly decreased CD68 and decreased miR21 and α-smooth muscle actin levels, suggesting the role of NOX2-dependent reactive oxygen species in miR21-induced Kupffer cell activation and stellate cell pathology. Furthermore, NOX2-dependent peroxynitrite generation was primarily responsible for cellular events observed following MC exposure since incubation with phenylboronic acid attenuated miR21 levels, Kupffer cell activation, and inflammatory cytokine release. Furthermore, blocking of the AKT pathway attenuated PP2A inhibitor-induced NOX2 activation and miR21 upregulation. Taken together, we show that PP2A may have protective roles, and its inhibition exacerbates NAFLD pathology via activating NOX2-dependent peroxynitrite generation, thus increasing miR21-induced pathology.NEW & NOTEWORTHY Protein phosphatase 2A inhibition causes nonalcoholic steatohepatitis (NASH) progression via NADPH oxidase 2. In addition to a novel emchanism of action, we describe a new tool to describe NASH histopathology.

Duke Scholars

Published In

Am J Physiol Gastrointest Liver Physiol

DOI

EISSN

1522-1547

Publication Date

October 1, 2019

Volume

317

Issue

4

Start / End Page

G408 / G428

Location

United States

Related Subject Headings

  • Protein Phosphatase 2
  • Peroxynitrous Acid
  • Non-alcoholic Fatty Liver Disease
  • NADPH Oxidases
  • NADPH Oxidase 2
  • Microcystins
  • MicroRNAs
  • Mice, Knockout
  • Mice, Inbred C57BL
  • Mice
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Albadrani, M., Seth, R. K., Sarkar, S., Kimono, D., Mondal, A., Bose, D., … Chatterjee, S. (2019). Exogenous PP2A inhibitor exacerbates the progression of nonalcoholic fatty liver disease via NOX2-dependent activation of miR21. Am J Physiol Gastrointest Liver Physiol, 317(4), G408–G428. https://doi.org/10.1152/ajpgi.00061.2019
Albadrani, Muayad, Ratanesh K. Seth, Sutapa Sarkar, Diana Kimono, Ayan Mondal, Dipro Bose, Dwayne E. Porter, et al. “Exogenous PP2A inhibitor exacerbates the progression of nonalcoholic fatty liver disease via NOX2-dependent activation of miR21.Am J Physiol Gastrointest Liver Physiol 317, no. 4 (October 1, 2019): G408–28. https://doi.org/10.1152/ajpgi.00061.2019.
Albadrani M, Seth RK, Sarkar S, Kimono D, Mondal A, Bose D, et al. Exogenous PP2A inhibitor exacerbates the progression of nonalcoholic fatty liver disease via NOX2-dependent activation of miR21. Am J Physiol Gastrointest Liver Physiol. 2019 Oct 1;317(4):G408–28.
Albadrani, Muayad, et al. “Exogenous PP2A inhibitor exacerbates the progression of nonalcoholic fatty liver disease via NOX2-dependent activation of miR21.Am J Physiol Gastrointest Liver Physiol, vol. 317, no. 4, Oct. 2019, pp. G408–28. Pubmed, doi:10.1152/ajpgi.00061.2019.
Albadrani M, Seth RK, Sarkar S, Kimono D, Mondal A, Bose D, Porter DE, Scott GI, Brooks B, Raychoudhury S, Nagarkatti M, Nagarkatti P, Jule Y, Diehl AM, Chatterjee S. Exogenous PP2A inhibitor exacerbates the progression of nonalcoholic fatty liver disease via NOX2-dependent activation of miR21. Am J Physiol Gastrointest Liver Physiol. 2019 Oct 1;317(4):G408–G428.

Published In

Am J Physiol Gastrointest Liver Physiol

DOI

EISSN

1522-1547

Publication Date

October 1, 2019

Volume

317

Issue

4

Start / End Page

G408 / G428

Location

United States

Related Subject Headings

  • Protein Phosphatase 2
  • Peroxynitrous Acid
  • Non-alcoholic Fatty Liver Disease
  • NADPH Oxidases
  • NADPH Oxidase 2
  • Microcystins
  • MicroRNAs
  • Mice, Knockout
  • Mice, Inbred C57BL
  • Mice