Skip to main content

LXRs regulate features of age-related macular degeneration and may be a potential therapeutic target.

Publication ,  Journal Article
Choudhary, M; Ismail, EN; Yao, P-L; Tayyari, F; Radu, RA; Nusinowitz, S; Boulton, ME; Apte, RS; Ruberti, JW; Handa, JT; Tontonoz, P; Malek, G
Published in: JCI Insight
January 16, 2020

Effective treatments and animal models for the most prevalent neurodegenerative form of blindness in elderly people, called age-related macular degeneration (AMD), are lacking. Genome-wide association studies have identified lipid metabolism and inflammation as AMD-associated pathogenic pathways. Given liver X receptors (LXRs), encoded by the nuclear receptor subfamily 1 group H members 2 and 3 (NR1H3 and NR1H2), are master regulators of these pathways, herein we investigated the role of LXR in human and mouse eyes as a function of age and disease and tested the therapeutic potential of targeting LXR. We identified immunopositive LXR fragments in human extracellular early dry AMD lesions and a decrease in LXR expression within the retinal pigment epithelium (RPE) as a function of age. Aged mice lacking LXR presented with isoform-dependent ocular pathologies. Specifically, loss of the Nr1h3 isoform resulted in pathobiologies aligned with AMD, supported by compromised visual function, accumulation of native and oxidized lipids in the outer retina, and upregulation of ocular inflammatory cytokines, while absence of Nr1h2 was associated with ocular lipoidal degeneration. LXR activation not only ameliorated lipid accumulation and oxidant-induced injury in RPE cells but also decreased ocular inflammatory markers and lipid deposition in a mouse model, thereby providing translational support for pursuing LXR-active pharmaceuticals as potential therapies for dry AMD.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

JCI Insight

DOI

EISSN

2379-3708

Publication Date

January 16, 2020

Volume

5

Issue

1

Location

United States

Related Subject Headings

  • Young Adult
  • Transcriptome
  • Retinal Pigment Epithelium
  • Retina
  • Phenotype
  • Middle Aged
  • Mice, Knockout
  • Mice, Inbred C57BL
  • Mice
  • Male
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Choudhary, M., Ismail, E. N., Yao, P.-L., Tayyari, F., Radu, R. A., Nusinowitz, S., … Malek, G. (2020). LXRs regulate features of age-related macular degeneration and may be a potential therapeutic target. JCI Insight, 5(1). https://doi.org/10.1172/jci.insight.131928
Choudhary, Mayur, Ebraheim N. Ismail, Pei-Li Yao, Faryan Tayyari, Roxana A. Radu, Steven Nusinowitz, Michael E. Boulton, et al. “LXRs regulate features of age-related macular degeneration and may be a potential therapeutic target.JCI Insight 5, no. 1 (January 16, 2020). https://doi.org/10.1172/jci.insight.131928.
Choudhary M, Ismail EN, Yao P-L, Tayyari F, Radu RA, Nusinowitz S, et al. LXRs regulate features of age-related macular degeneration and may be a potential therapeutic target. JCI Insight. 2020 Jan 16;5(1).
Choudhary, Mayur, et al. “LXRs regulate features of age-related macular degeneration and may be a potential therapeutic target.JCI Insight, vol. 5, no. 1, Jan. 2020. Pubmed, doi:10.1172/jci.insight.131928.
Choudhary M, Ismail EN, Yao P-L, Tayyari F, Radu RA, Nusinowitz S, Boulton ME, Apte RS, Ruberti JW, Handa JT, Tontonoz P, Malek G. LXRs regulate features of age-related macular degeneration and may be a potential therapeutic target. JCI Insight. 2020 Jan 16;5(1).

Published In

JCI Insight

DOI

EISSN

2379-3708

Publication Date

January 16, 2020

Volume

5

Issue

1

Location

United States

Related Subject Headings

  • Young Adult
  • Transcriptome
  • Retinal Pigment Epithelium
  • Retina
  • Phenotype
  • Middle Aged
  • Mice, Knockout
  • Mice, Inbred C57BL
  • Mice
  • Male