A3 adenosine and CB1 receptors activate a PKC-sensitive Cl- current in human nonpigmented ciliary epithelial cells via a G beta gamma-coupled MAPK signaling pathway.

Journal Article (Journal Article)

(1) We examined A3 adenosine and CB1 cannabinoid receptor-coupled signaling pathways regulating Cl(-) current in a human nonpigmented ciliary epithelial (NPCE) cell line. (2) Whole-cell patch-clamp recordings demonstrated that the A3 receptor agonist, IB-MECA, activates an outwardly rectifying Cl(-)current (I(Cl,Aden)) in NPCE cells, which was inhibited by the adenosine receptor antagonist, CGS-15943 or by the protein kinase C (PKC) activator, phorbol 12,13 dibutyrate (PDBu). (3) Treatment of NPCE cells with pertussis-toxin (PTX), or transfection with the COOH-terminus of beta-adrenergic receptor kinase (ct-betaARK), inhibited I(Cl,Aden). The phosphatidyl inositol 3-kinase (PI3K) inhibitor, wortmannin, had no effect on I(Cl,Aden); however, the mitogen-activated protein kinase kinase (MEK) inhibitor, PD98059, inhibited I(Cl,Aden). (4) Reverse transcription-polymerase chain reaction experiments and immunocytochemistry confirmed mRNA and protein expression for the CB1 receptor in NPCE cells, and the CB1 receptor agonist, Win 55,212-2, activated a PDBu-sensitive Cl(-) current (I(Cl,Win)). (5) Transfection of NPCE cells with the human CB1 (hCB1) receptor, increased I(Cl,Win), consistent with increased receptor expression, and I(Cl,Win) in hCB1 receptor-transfected cells was decreased after application of a CB1 receptor inverse agonist, SR 141716. (6) Constitutive activity for CB1 receptors was not significant in NPCE cells as transfection with hCB1 receptors did not increase basal Cl(-) current, nor was basal current inhibited by SR 141716. (7) I(Cl,Win) was inhibited by PTX preincubation, by transfection with ct-betaARK and by the MEK inhibitor, PD98059, but unaffected by the PI3K inhibitor, wortmannin. (8) We conclude that both A3 and CB1 receptors activate a PKC-sensitive Cl(-) current in human NPCE cells via a G(i/o)/Gbetagamma signaling pathway, in a manner independent of PI3K but involving MAPK.

Full Text

Duke Authors

Cited Authors

  • Shi, C; Szczesniak, A; Mao, L; Jollimore, C; Coca-Prados, M; Hung, O; Kelly, MEM

Published Date

  • June 2003

Published In

Volume / Issue

  • 139 / 3

Start / End Page

  • 475 - 486

PubMed ID

  • 12788807

Pubmed Central ID

  • PMC1573867

International Standard Serial Number (ISSN)

  • 0007-1188

Digital Object Identifier (DOI)

  • 10.1038/sj.bjp.0705266


  • eng

Conference Location

  • England