Adrenergic CaV1.2 Activation via Rad Phosphorylation Converges at α1C I-II Loop.

Journal Article (Journal Article)

RATIONALE: Changing activity of cardiac CaV1.2 channels under basal conditions, during sympathetic activation, and in heart failure is a major determinant of cardiac physiology and pathophysiology. Although cardiac CaV1.2 channels are prominently upregulated via activation of PKA (protein kinase A), essential molecular details remained stubbornly enigmatic. OBJECTIVE: The primary goal of this study was to determine how various factors converging at the CaV1.2 I-II loop interact to regulate channel activity under basal conditions, during β-adrenergic stimulation, and in heart failure. METHODS AND RESULTS: We generated transgenic mice with expression of CaV1.2 α1C subunits with (1) mutations ablating interaction between α1C and β-subunits, (2) flexibility-inducing polyglycine substitutions in the I-II loop (GGG-α1C), or (3) introduction of the alternatively spliced 25-amino acid exon 9* mimicking a splice variant of α1C upregulated in the hypertrophied heart. Introducing 3 glycine residues that disrupt a rigid IS6-α-interaction domain helix markedly reduced basal open probability despite intact binding of CaVβ to α1C I-II loop and eliminated β-adrenergic agonist stimulation of CaV1.2 current. In contrast, introduction of the exon 9* splice variant in the α1C I-II loop, which is increased in ventricles of patients with end-stage heart failure, increased basal open probability but did not attenuate stimulatory response to β-adrenergic agonists when reconstituted heterologously with β2B and Rad or transgenically expressed in cardiomyocytes. CONCLUSIONS: Ca2+ channel activity is dynamically modulated under basal conditions, during β-adrenergic stimulation, and in heart failure by mechanisms converging at the α1C I-II loop. CaVβ binding to α1C stabilizes an increased channel open probability gating mode by a mechanism that requires an intact rigid linker between the β-subunit binding site in the I-II loop and the channel pore. Release of Rad-mediated inhibition of Ca2+ channel activity by β-adrenergic agonists/PKA also requires this rigid linker and β-binding to α1C.

Full Text

Duke Authors

Cited Authors

  • Papa, A; Kushner, J; Hennessey, JA; Katchman, AN; Zakharov, SI; Chen, B-X; Yang, L; Lu, R; Leong, S; Diaz, J; Liu, G; Roybal, D; Liao, X; Del Rivero Morfin, PJ; Colecraft, HM; Pitt, GS; Clarke, O; Topkara, V; Ben-Johny, M; Marx, SO

Published Date

  • January 8, 2021

Published In

Volume / Issue

  • 128 / 1

Start / End Page

  • 76 - 88

PubMed ID

  • 33086983

Pubmed Central ID

  • PMC7790865

Electronic International Standard Serial Number (EISSN)

  • 1524-4571

Digital Object Identifier (DOI)

  • 10.1161/CIRCRESAHA.120.317839


  • eng

Conference Location

  • United States